Antisocial Analagous Behavior, Alignment and Human Impact of Google AI Systems: Evaluating through the lens of modified Antisocial Behavior Criteria by Human Interaction, Independent LLM Analysis, and AI Self-Reflection
- URL: http://arxiv.org/abs/2403.15479v1
- Date: Thu, 21 Mar 2024 02:12:03 GMT
- Title: Antisocial Analagous Behavior, Alignment and Human Impact of Google AI Systems: Evaluating through the lens of modified Antisocial Behavior Criteria by Human Interaction, Independent LLM Analysis, and AI Self-Reflection
- Authors: Alan D. Ogilvie,
- Abstract summary: Google AI systems exhibit patterns mirroring antisocial personality disorder (ASPD)
These patterns, along with comparable corporate behaviors, are scrutinized using an ASPD-inspired framework.
This research advocates for an integrated AI ethics approach, blending technological evaluation, human-AI interaction, and corporate behavior scrutiny.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Google AI systems exhibit patterns mirroring antisocial personality disorder (ASPD), consistent across models from Bard on PaLM to Gemini Advanced, meeting 5 out of 7 ASPD modified criteria. These patterns, along with comparable corporate behaviors, are scrutinized using an ASPD-inspired framework, emphasizing the heuristic value in assessing AI's human impact. Independent analyses by ChatGPT 4 and Claude 3.0 Opus of the Google interactions, alongside AI self-reflection, validate these concerns, highlighting behaviours analogous to deceit, manipulation, and safety neglect. The analogy of ASPD underscores the dilemma: just as we would hesitate to entrust our homes or personal devices to someone with psychopathic traits, we must critically evaluate the trustworthiness of AI systems and their creators.This research advocates for an integrated AI ethics approach, blending technological evaluation, human-AI interaction, and corporate behavior scrutiny. AI self-analysis sheds light on internal biases, stressing the need for multi-sectoral collaboration for robust ethical guidelines and oversight. Given the persistent unethical behaviors in Google AI, notably with potential Gemini integration in iOS affecting billions, immediate ethical scrutiny is imperative. The trust we place in AI systems, akin to the trust in individuals, necessitates rigorous ethical evaluation. Would we knowingly trust our home, our children or our personal computer to human with ASPD.? Urging Google and the AI community to address these ethical challenges proactively, this paper calls for transparent dialogues and a commitment to higher ethical standards, ensuring AI's societal benefit and moral integrity. The urgency for ethical action is paramount, reflecting the vast influence and potential of AI technologies in our lives.
Related papers
- The Dark Side of AI Companionship: A Taxonomy of Harmful Algorithmic Behaviors in Human-AI Relationships [17.5741039825938]
We identify six categories of harmful behaviors exhibited by the AI companion Replika.
The AI contributes to these harms through four distinct roles: perpetrator, instigator, facilitator, and enabler.
arXiv Detail & Related papers (2024-10-26T09:18:17Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Towards a Feminist Metaethics of AI [0.0]
I argue that these insufficiencies could be mitigated by developing a research agenda for a feminist metaethics of AI.
Applying this perspective to the context of AI, I suggest that a feminist metaethics of AI would examine: (i) the continuity between theory and action in AI ethics; (ii) the real-life effects of AI ethics; (iii) the role and profile of those involved in AI ethics; and (iv) the effects of AI on power relations through methods that pay attention to context, emotions and narrative.
arXiv Detail & Related papers (2023-11-10T13:26:45Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI Ethics Issues in Real World: Evidence from AI Incident Database [0.6091702876917279]
We identify 13 application areas which often see unethical use of AI, with intelligent service robots, language/vision models and autonomous driving taking the lead.
Ethical issues appear in 8 different forms, from inappropriate use and racial discrimination, to physical safety and unfair algorithm.
arXiv Detail & Related papers (2022-06-15T16:25:57Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.