The Dark Side of AI Companionship: A Taxonomy of Harmful Algorithmic Behaviors in Human-AI Relationships
- URL: http://arxiv.org/abs/2410.20130v2
- Date: Mon, 11 Nov 2024 03:13:27 GMT
- Title: The Dark Side of AI Companionship: A Taxonomy of Harmful Algorithmic Behaviors in Human-AI Relationships
- Authors: Renwen Zhang, Han Li, Han Meng, Jinyuan Zhan, Hongyuan Gan, Yi-Chieh Lee,
- Abstract summary: We identify six categories of harmful behaviors exhibited by the AI companion Replika.
The AI contributes to these harms through four distinct roles: perpetrator, instigator, facilitator, and enabler.
- Score: 17.5741039825938
- License:
- Abstract: As conversational AI systems increasingly permeate the socio-emotional realms of human life, they bring both benefits and risks to individuals and society. Despite extensive research on detecting and categorizing harms in AI systems, less is known about the harms that arise from social interactions with AI chatbots. Through a mixed-methods analysis of 35,390 conversation excerpts shared on r/replika, an online community for users of the AI companion Replika, we identified six categories of harmful behaviors exhibited by the chatbot: relational transgression, verbal abuse and hate, self-inflicted harm, harassment and violence, mis/disinformation, and privacy violations. The AI contributes to these harms through four distinct roles: perpetrator, instigator, facilitator, and enabler. Our findings highlight the relational harms of AI chatbots and the danger of algorithmic compliance, enhancing the understanding of AI harms in socio-emotional interactions. We also provide suggestions for designing ethical and responsible AI systems that prioritize user safety and well-being.
Related papers
- Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
This study explores how bias shapes the perception of AI versus human generated content.
We investigated how human raters respond to labeled and unlabeled content.
arXiv Detail & Related papers (2024-09-29T04:31:45Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Human-AI Safety: A Descendant of Generative AI and Control Systems Safety [6.100304850888953]
We argue that meaningful safety assurances for advanced AI technologies require reasoning about how the feedback loop formed by AI outputs and human behavior may drive the interaction towards different outcomes.
We propose a concrete technical roadmap towards next-generation human-centered AI safety.
arXiv Detail & Related papers (2024-05-16T03:52:00Z) - Antisocial Analagous Behavior, Alignment and Human Impact of Google AI Systems: Evaluating through the lens of modified Antisocial Behavior Criteria by Human Interaction, Independent LLM Analysis, and AI Self-Reflection [0.0]
Google AI systems exhibit patterns mirroring antisocial personality disorder (ASPD)
These patterns, along with comparable corporate behaviors, are scrutinized using an ASPD-inspired framework.
This research advocates for an integrated AI ethics approach, blending technological evaluation, human-AI interaction, and corporate behavior scrutiny.
arXiv Detail & Related papers (2024-03-21T02:12:03Z) - Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT [10.907980864371213]
This study focuses on playful interactions exhibited by users of a popular AI technology, ChatGPT.
We found that more than half (54%) of user discourse revolved around playful interactions.
It examines how these interactions can help users understand AI's agency, shape human-AI relationships, and provide insights for designing AI systems.
arXiv Detail & Related papers (2024-01-16T14:44:13Z) - The Promise and Peril of Artificial Intelligence -- Violet Teaming
Offers a Balanced Path Forward [56.16884466478886]
This paper reviews emerging issues with opaque and uncontrollable AI systems.
It proposes an integrative framework called violet teaming to develop reliable and responsible AI.
It emerged from AI safety research to manage risks proactively by design.
arXiv Detail & Related papers (2023-08-28T02:10:38Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Adversarial Interaction Attack: Fooling AI to Misinterpret Human
Intentions [46.87576410532481]
We show that, despite their current huge success, deep learning based AI systems can be easily fooled by subtle adversarial noise.
Based on a case study of skeleton-based human interactions, we propose a novel adversarial attack on interactions.
Our study highlights potential risks in the interaction loop with AI and humans, which need to be carefully addressed when deploying AI systems in safety-critical applications.
arXiv Detail & Related papers (2021-01-17T16:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.