論文の概要: Open Source Conversational LLMs do not know most Spanish words
- arxiv url: http://arxiv.org/abs/2403.15491v1
- Date: Thu, 21 Mar 2024 15:41:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 22:32:02.859562
- Title: Open Source Conversational LLMs do not know most Spanish words
- Title(参考訳): オープンソースの会話型LLMはスペイン語の単語をほとんど知らない
- Authors: Javier Conde, Miguel González, Nina Melero, Raquel Ferrando, Gonzalo Martínez, Elena Merino-Gómez, José Alberto Hernández, Pedro Reviriego,
- Abstract要約: 我々は,オープンソースチャットLLMがスペイン語の単語に対して持つ知識を,参照辞書における単語のサンプルをテストすることによって評価する。
その結果、オープンソースのチャットLLMは、単語の重要部分に対して誤った意味を生じさせ、文脈で文章を書くためにほとんどの単語を正しく利用できないことがわかった。
- 参考スコア(独自算出の注目度): 2.737783055857426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing interest in Large Language Models (LLMs) and in particular in conversational models with which users can interact has led to the development of a large number of open-source chat LLMs. These models are evaluated on a wide range of benchmarks to assess their capabilities in answering questions or solving problems on almost any possible topic or to test their ability to reason or interpret texts. Instead, the evaluation of the knowledge that these models have of the languages has received much less attention. For example, the words that they can recognize and use in different languages. In this paper, we evaluate the knowledge that open-source chat LLMs have of Spanish words by testing a sample of words in a reference dictionary. The results show that open-source chat LLMs produce incorrect meanings for an important fraction of the words and are not able to use most of the words correctly to write sentences with context. These results show how Spanish is left behind in the open-source LLM race and highlight the need to push for linguistic fairness in conversational LLMs ensuring that they provide similar performance across languages.
- Abstract(参考訳): 大規模言語モデル(LLM)への関心が高まり、特に対話可能な対話モデルへの関心が高まり、多数のオープンソースのチャットLLMの開発に繋がった。
これらのモデルは、様々なベンチマークで評価され、質問に答えたり、ほぼあらゆる可能なトピックで問題を解く能力を評価したり、テキストの推論や解釈の能力をテストする。
代わりに、これらのモデルが言語に持つ知識の評価は、はるかに少ない注意を払っている。
例えば、それらが認識し、異なる言語で使用できる単語である。
本稿では,オープンソースチャットLLMがスペイン語の単語について,参照辞書における単語のサンプルをテストすることによって,その知識を評価する。
その結果、オープンソースのチャットLLMは、単語の重要部分に対して誤った意味を生じさせ、文脈で文章を書くのにほとんどの単語を正しく利用できないことが明らかとなった。
これらの結果は、スペイン語がオープンソースのLLMレースに残されていることを示し、会話型LLMにおける言語フェアネスの必要性を強調し、言語間で同様のパフォーマンスを提供する。
関連論文リスト
- Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
推論能力は大規模言語モデル(LLM)にとって不可欠である
我々は,多言語モデルからLLMと外部言語理解機能を融合したMindMergerを提案する。
MindMergerは、特に低リソース言語において、すべてのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-05-27T17:41:54Z) - Evaluating the Elementary Multilingual Capabilities of Large Language Models with MultiQ [16.637598165238934]
大規模言語モデル(LLM)は、世界中の英語話者の大多数を含むすべての人にサービスを提供する必要がある。
近年の研究では、意図した用途に制限があるにもかかわらず、多くの言語でLSMを促すことが示されている。
我々は、27.4kのテスト質問に答える基本的なオープンエンド質問のための新しい銀標準ベンチマークであるMultiQを紹介する。
論文 参考訳(メタデータ) (2024-03-06T16:01:44Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Beware of Words: Evaluating the Lexical Diversity of Conversational LLMs using ChatGPT as Case Study [3.0059120458540383]
対話型大言語モデル(LLM)が生成するテキストの語彙的リッチ性の評価と,それがモデルパラメータにどのように依存するかを検討する。
その結果、語彙豊かさがChatGPTのバージョンと、そのパラメータのいくつか、例えば存在ペナルティやモデルに割り当てられた役割にどのように依存しているかが示される。
論文 参考訳(メタデータ) (2024-02-11T13:41:17Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Establishing Vocabulary Tests as a Benchmark for Evaluating Large
Language Models [2.7013338932521416]
我々は,大言語モデル(LLM)の性能を評価する貴重なツールとして,語彙テストの復活を提唱する。
2つの言語にまたがる2つの語彙テスト形式を用いて7つのLSMを評価し,その語彙的知識の驚くべきギャップを明らかにする。
論文 参考訳(メタデータ) (2023-10-23T08:45:12Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
この問題を解決するためにCIPHER(Communicative Inter-Model Protocol Through Embedding Representation)を導入する。
自然言語から逸脱することで、CIPHERはモデルの重みを変更することなく、より広い範囲の情報を符号化する利点を提供する。
このことは、LLM間の通信における代替の"言語"としての埋め込みの優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-10T03:06:38Z) - Spoken Language Intelligence of Large Language Models for Language
Learning [3.5924382852350902]
教育分野における大規模言語モデル(LLM)の有効性を評価することに注力する。
上記のシナリオにおけるLLMの有効性を評価するために,新しい複数選択質問データセットを提案する。
また,ゼロショット法や少数ショット法など,様々なプロンプト技術の影響についても検討する。
異なる大きさのモデルは、音韻学、音韻学、第二言語習得の概念をよく理解しているが、実世界の問題に対する推論には限界がある。
論文 参考訳(メタデータ) (2023-08-28T12:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。