論文の概要: Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English
- arxiv url: http://arxiv.org/abs/2503.04099v1
- Date: Thu, 06 Mar 2025 05:15:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:33.311210
- Title: Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English
- Title(参考訳): LLM推論精度と説明の差異--アフリカ系アメリカ人英語を事例として
- Authors: Runtao Zhou, Guangya Wan, Saadia Gabriel, Sheng Li, Alexander J Gates, Maarten Sap, Thomas Hartvigsen,
- Abstract要約: 本研究では,Large Language Models (LLMs) 推論タスクにおける方言の相違について検討する。
LLMは、AAE入力に対するより正確な応答とより単純な推論チェーンと説明を生成する。
これらの知見は、LLMの処理方法と異なる言語品種の理由の体系的差異を浮き彫りにした。
- 参考スコア(独自算出の注目度): 66.97110551643722
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, leading to their widespread deployment. However, recent studies have highlighted concerning biases in these models, particularly in their handling of dialectal variations like African American English (AAE). In this work, we systematically investigate dialectal disparities in LLM reasoning tasks. We develop an experimental framework comparing LLM performance given Standard American English (SAE) and AAE prompts, combining LLM-based dialect conversion with established linguistic analyses. We find that LLMs consistently produce less accurate responses and simpler reasoning chains and explanations for AAE inputs compared to equivalent SAE questions, with disparities most pronounced in social science and humanities domains. These findings highlight systematic differences in how LLMs process and reason about different language varieties, raising important questions about the development and deployment of these systems in our multilingual and multidialectal world. Our code repository is publicly available at https://github.com/Runtaozhou/dialect_bias_eval.
- Abstract(参考訳): 大規模言語モデル(LLM)はタスクの推論において顕著な能力を示しており、広くデプロイされている。
しかしながら、近年の研究はこれらのモデルにおけるバイアス、特にアフリカ・アメリカン・イングリッシュ(AAE)のような方言のバリエーションの扱いについて強調している。
本研究では,LLM推論タスクにおける方言の相違を系統的に検討する。
標準アメリカ英語(SAE)とAEプロンプト(AEプロンプト)を比較し,LLMに基づく方言変換と確立された言語分析を組み合わせた実験フレームワークを開発した。
LLMは社会科学と人文科学の領域で最も顕著な相違点を持つSAEの質問に比べ、AAEの入力に対してより正確で簡潔な推論連鎖や説明を連続的に生成する。
これらの知見は,多言語・多言語の世界において,LLMがいかに処理し,異なる言語品種に対する理由付けを行うかという点において,体系的な違いを浮き彫りにしている。
私たちのコードリポジトリはhttps://github.com/Runtaozhou/dialect_bias_eval.comで公開されています。
関連論文リスト
- Do LLMs Understand Ambiguity in Text? A Case Study in Open-world Question Answering [15.342415325821063]
自然言語の曖昧さは、オープンドメインの質問応答に使用される大規模言語モデル(LLM)に重大な課題をもたらす。
我々は,明示的曖昧化戦略の効果を計測することに集中して,市販のLLM性能と数発のLLM性能を比較した。
本研究では, 難解な問合せタスクにおいて, LLM性能を向上させるために, 簡単な, トレーニング不要, トークンレベルの曖昧さを効果的に活用できることを実証する。
論文 参考訳(メタデータ) (2024-11-19T10:27:26Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
本稿では, LLMのイデオロギー的姿勢が創造者の世界観を反映していることを示す。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Do Large Language Models Have an English Accent? Evaluating and Improving the Naturalness of Multilingual LLMs [13.558778781305998]
大規模言語モデル (LLM) は主に英語を基本言語として設計されている。
多言語である少数の人々でさえ、強い英語中心の偏見を示す傾向がある。
本稿では,多言語出力の語彙的および構文的自然性を評価するための新しい自動コーパスレベル指標を提案する。
論文 参考訳(メタデータ) (2024-10-21T12:34:17Z) - One Language, Many Gaps: Evaluating Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks [68.33068005789116]
本研究は,大言語モデル(LLM)の標準推論タスクにおける方言処理における妥当性と頑健さを客観的に評価することを目的とした最初の研究である。
我々は、コンピュータサイエンスのバックグラウンドの専門家を含むAAVEスピーカーを雇い、HumanEvalやGSM8Kといった7つの人気のあるベンチマークを書き換えます。
以上の結果から,これら広く使用されているモデルのほとんどは,AAVEにおけるクエリに対する不安定さと不公平さを顕著に示していることがわかった。
論文 参考訳(メタデータ) (2024-10-14T18:44:23Z) - Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning [41.606494950216764]
In-context Learning (ICL)は、スケールアップされた大規模言語モデル(LLM)の開発と共に強力な能力として登場した。
本稿では,ICLの全体的な性能をラベル空間,フォーマット,識別の3次元に分解する。
ICLはラベル空間とフォーマットを制御し,所望のラベル語にLLMが反応するのに役立つことを示す。
論文 参考訳(メタデータ) (2024-04-11T08:20:10Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering [52.86931192259096]
知識ベース質問回答(KBQA)は,知識ベースにおける事実に基づいた自然言語質問への回答を目的としている。
最近の研究は、論理形式生成のための大規模言語モデル(LLM)の機能を活用して性能を向上させる。
論文 参考訳(メタデータ) (2024-01-11T09:27:50Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。