Visual Analytics for Fine-grained Text Classification Models and Datasets
- URL: http://arxiv.org/abs/2403.15492v1
- Date: Thu, 21 Mar 2024 17:26:28 GMT
- Title: Visual Analytics for Fine-grained Text Classification Models and Datasets
- Authors: Munkhtulga Battogtokh, Yiwen Xing, Cosmin Davidescu, Alfie Abdul-Rahman, Michael Luck, Rita Borgo,
- Abstract summary: SemLa is a novel visual analytics system tailored for fine-grained text classification.
This paper details the iterative design study and the resulting innovations featured in SemLa.
- Score: 3.6873612681664016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In natural language processing (NLP), text classification tasks are increasingly fine-grained, as datasets are fragmented into a larger number of classes that are more difficult to differentiate from one another. As a consequence, the semantic structures of datasets have become more complex, and model decisions more difficult to explain. Existing tools, suited for coarse-grained classification, falter under these additional challenges. In response to this gap, we worked closely with NLP domain experts in an iterative design-and-evaluation process to characterize and tackle the growing requirements in their workflow of developing fine-grained text classification models. The result of this collaboration is the development of SemLa, a novel visual analytics system tailored for 1) dissecting complex semantic structures in a dataset when it is spatialized in model embedding space, and 2) visualizing fine-grained nuances in the meaning of text samples to faithfully explain model reasoning. This paper details the iterative design study and the resulting innovations featured in SemLa. The final design allows contrastive analysis at different levels by unearthing lexical and conceptual patterns including biases and artifacts in data. Expert feedback on our final design and case studies confirm that SemLa is a useful tool for supporting model validation and debugging as well as data annotation.
Related papers
- MaterioMiner -- An ontology-based text mining dataset for extraction of process-structure-property entities [0.0]
We present the MaterioMiner dataset and the materials ontology where ontological concepts are associated with textual entities.
We explore the consistency between the three raters and perform fine-process-trained models to showcase the feasibility of named-process recognition model training.
arXiv Detail & Related papers (2024-08-05T21:42:59Z) - Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet Extraction (EASTE) is a novel Aspect-Based Sentiment Analysis task.
Our research aims to achieve high performance on the EASTE task and investigates the impact of model size, type, and adaptation techniques on task performance.
Ultimately, we provide detailed insights and achieving state-of-the-art results in complex sentiment analysis.
arXiv Detail & Related papers (2024-07-04T16:48:14Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided writing, or chat-based text generation.
We tackle this shortcoming by proposing a tree-in-the-loop approach, where a visual representation of the beam search tree is the central component for analyzing, explaining, and adapting the generated outputs.
We present generAItor, a visual analytics technique, augmenting the central beam search tree with various task-specific widgets, providing targeted visualizations and interaction possibilities.
arXiv Detail & Related papers (2024-03-12T13:09:15Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Improving Compositional Generalization with Self-Training for
Data-to-Text Generation [36.973617793800315]
We study the compositional generalization of current generation models in data-to-text tasks.
By simulating structural shifts in the compositional Weather dataset, we show that T5 models fail to generalize to unseen structures.
We propose an approach based on self-training using finetuned BLEURT for pseudo-response selection.
arXiv Detail & Related papers (2021-10-16T04:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.