論文の概要: Twin Auto-Encoder Model for Learning Separable Representation in Cyberattack Detection
- arxiv url: http://arxiv.org/abs/2403.15509v1
- Date: Fri, 22 Mar 2024 03:39:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 22:22:15.609380
- Title: Twin Auto-Encoder Model for Learning Separable Representation in Cyberattack Detection
- Title(参考訳): サイバー攻撃検出における分離表現学習のためのツインオートエンコーダモデル
- Authors: Phai Vu Dinh, Quang Uy Nguyen, Thai Hoang Dinh, Diep N. Nguyen, Bao Son Pham, Eryk Dutkiewicz,
- Abstract要約: サイバーアタック検出のためのTwin Auto-Encoder (TAE) と呼ばれる新しいモードを提案する。
実験結果は、最先端のRLモデルとよく知られた機械学習アルゴリズムよりもTAEの精度が優れていることを示す。
- 参考スコア(独自算出の注目度): 21.581155557707632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation Learning (RL) plays a pivotal role in the success of many problems including cyberattack detection. Most of the RL methods for cyberattack detection are based on the latent vector of Auto-Encoder (AE) models. An AE transforms raw data into a new latent representation that better exposes the underlying characteristics of the input data. Thus, it is very useful for identifying cyberattacks. However, due to the heterogeneity and sophistication of cyberattacks, the representation of AEs is often entangled/mixed resulting in the difficulty for downstream attack detection models. To tackle this problem, we propose a novel mod called Twin Auto-Encoder (TAE). TAE deterministically transforms the latent representation into a more distinguishable representation namely the \textit{separable representation} and the reconstructsuct the separable representation at the output. The output of TAE called the \textit{reconstruction representation} is input to downstream models to detect cyberattacks. We extensively evaluate the effectiveness of TAE using a wide range of bench-marking datasets. Experiment results show the superior accuracy of TAE over state-of-the-art RL models and well-known machine learning algorithms. Moreover, TAE also outperforms state-of-the-art models on some sophisticated and challenging attacks. We then investigate various characteristics of TAE to further demonstrate its superiority.
- Abstract(参考訳): 表現学習(Representation Learning, RL)は、サイバー攻撃検出を含む多くの問題の成功において重要な役割を担っている。
サイバー攻撃検出のためのRL法のほとんどは、オートエンコーダ(AE)モデルの潜伏ベクトルに基づいている。
AEは、生データを新しい潜在表現に変換し、入力データの基盤となる特性をよりよく公開する。
そのため、サイバー攻撃の特定に非常に有用である。
しかし、サイバー攻撃の不均一性と高度化のため、AEsの表現はしばしば絡み合わされ混合されるため、下流攻撃検出モデルは困難である。
この問題に対処するため,Twin Auto-Encoder (TAE) と呼ばれる新しいモードを提案する。
TAE は遅延表現をより区別可能な表現、すなわち \textit{separable representation} に決定的に変換し、出力で分離可能な表現を再構成する。
textit{reconstruction representation} と呼ばれるTAEの出力は、サイバー攻撃を検出するために下流モデルに入力される。
幅広いベンチマーキングデータセットを用いてTAEの有効性を広範囲に評価した。
実験結果は、最先端のRLモデルとよく知られた機械学習アルゴリズムよりもTAEの精度が優れていることを示す。
さらにTAEは、高度で挑戦的な攻撃に対して最先端のモデルよりも優れています。
次に,TAEの諸特性について検討し,その優位性を示す。
関連論文リスト
- AI-Generated Video Detection via Spatio-Temporal Anomaly Learning [2.1210527985139227]
ユーザは、偽情報を拡散するために、既存のないビデオを簡単に作成できる。
モデルトレーニングと評価のためのベンチマークとして,大規模ビデオデータセット(GVD)を構築した。
論文 参考訳(メタデータ) (2024-03-25T11:26:18Z) - Multiple-Input Auto-Encoder Guided Feature Selection for IoT Intrusion Detection Systems [30.16714420093091]
本稿ではまず,Multiple-Input Auto-Encoder (MIAE)と呼ばれる新しいニューラルネットワークアーキテクチャを紹介する。
MIAEは複数のサブエンコーダで構成されており、異なる特性を持つ異なるソースからの入力を処理できる。
より関連性の高い機能を排除し、保持するために、トレーニングプロセスにおいて重要/冗長でないものを取り除くために、我々はさらに機能選択層を設計し、組み込む。
この層は表現ベクトルにおける特徴の重要性を学習し、表現ベクトルから情報的特徴の選択を容易にする。
論文 参考訳(メタデータ) (2024-03-22T03:54:04Z) - Intrusion Detection System with Machine Learning and Multiple Datasets [0.0]
本稿では,機械学習(ML)を利用した拡張侵入検知システム(IDS)について検討する。
最終的に、この改良されたシステムは、非倫理的なハッカーによる攻撃に対抗するために使用できる。
論文 参考訳(メタデータ) (2023-12-04T14:58:19Z) - Zero Day Threat Detection Using Metric Learning Autoencoders [3.1965908200266173]
企業ネットワークへのゼロデイ脅威(ZDT)の拡散は、非常にコストがかかる。
ディープラーニング手法は、高度に非線形な振る舞いパターンをキャプチャする能力にとって魅力的な選択肢である。
ここで提示されるモデルは、さらに2つのデータセットでトレーニングされ、評価され、新しいネットワークトポロジに一般化しても、有望な結果を示し続ける。
論文 参考訳(メタデータ) (2022-11-01T13:12:20Z) - A White-Box Adversarial Attack Against a Digital Twin [0.0]
本稿では,敵対的攻撃に対するDigital Twin(DT)の感受性について検討する。
まず、ディープニューラルネットワークアーキテクチャを用いて車両システムのDTを定式化し、それから敵攻撃を開始する。
トレーニングされたモデルへの入力を摂動させることでDTモデルを攻撃し、ホワイトボックスアタックによってモデルがいかに簡単に破られるかを示す。
論文 参考訳(メタデータ) (2022-10-25T13:41:02Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
本稿では,合成データセットの自動生成ツールであるCARLA-GeARについて述べる。
このツールは、Python APIを使用して、CARLAシミュレータ上に構築されており、自律運転のコンテキストにおいて、いくつかのビジョンタスク用のデータセットを生成することができる。
本稿では,CARLA-GeARで生成されたデータセットが,現実世界の敵防衛のベンチマークとして今後どのように利用されるかを示す。
論文 参考訳(メタデータ) (2022-06-09T09:17:38Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Defending Variational Autoencoders from Adversarial Attacks with MCMC [74.36233246536459]
変分オートエンコーダ(VAE)は、様々な領域で使用される深部生成モデルである。
以前の研究が示すように、視覚的にわずかに修正された入力に対する予期せぬ潜在表現と再構成を生成するために、VAEを簡単に騙すことができる。
本稿では, 敵攻撃構築のための目的関数について検討し, モデルのロバスト性を評価する指標を提案し, 解決策を提案する。
論文 参考訳(メタデータ) (2022-03-18T13:25:18Z) - Hierarchical Variational Autoencoder for Visual Counterfactuals [79.86967775454316]
条件変量オート(VAE)は、説明可能な人工知能(XAI)ツールとして注目されている。
本稿では, 後部の効果がいかに緩和され, 対物的効果が成功するかを示す。
本稿では,アプリケーション内の分類器を視覚的に監査できる階層型VAEについて紹介する。
論文 参考訳(メタデータ) (2021-02-01T14:07:11Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。