論文の概要: Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control
- arxiv url: http://arxiv.org/abs/2403.15577v1
- Date: Fri, 22 Mar 2024 19:04:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 22:02:34.087147
- Title: Autonomous Driving With Perception Uncertainties: Deep-Ensemble Based Adaptive Cruise Control
- Title(参考訳): 認識不確かさによる自律走行:ディープ・アンサンブルに基づく適応型クルーズ制御
- Authors: Xiao Li, H. Eric Tseng, Anouck Girard, Ilya Kolmanovsky,
- Abstract要約: ブラックボックスDeep Neural Networks (DNN) を用いた高度な認識システムは、人間のような理解を実証する。
予測不可能な振る舞いと解釈可能性の欠如は、安全クリティカルなシナリオへの展開を妨げる可能性がある。
- 参考スコア(独自算出の注目度): 6.492311803411367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving depends on perception systems to understand the environment and to inform downstream decision-making. While advanced perception systems utilizing black-box Deep Neural Networks (DNNs) demonstrate human-like comprehension, their unpredictable behavior and lack of interpretability may hinder their deployment in safety critical scenarios. In this paper, we develop an Ensemble of DNN regressors (Deep Ensemble) that generates predictions with quantification of prediction uncertainties. In the scenario of Adaptive Cruise Control (ACC), we employ the Deep Ensemble to estimate distance headway to the lead vehicle from RGB images and enable the downstream controller to account for the estimation uncertainty. We develop an adaptive cruise controller that utilizes Stochastic Model Predictive Control (MPC) with chance constraints to provide a probabilistic safety guarantee. We evaluate our ACC algorithm using a high-fidelity traffic simulator and a real-world traffic dataset and demonstrate the ability of the proposed approach to effect speed tracking and car following while maintaining a safe distance headway. The out-of-distribution scenarios are also examined.
- Abstract(参考訳): 自律運転は、環境を理解し、下流の意思決定を知らせるために知覚システムに依存する。
ブラックボックスのDeep Neural Networks(DNN)を利用した高度な認識システムは、人間のような理解を実証するが、予測不可能な振る舞いと解釈可能性の欠如は、安全クリティカルなシナリオへの展開を妨げる可能性がある。
本稿では,予測不確かさの定量化を伴う予測を生成するDNN回帰器(Deep Ensemble)の開発を行う。
適応クルーズ制御(ACC)のシナリオでは、RGB画像から先頭車への距離を推定するためにDeep Ensembleを用いて、下流コントローラが推定の不確実性を考慮できるようにする。
我々は確率論的モデル予測制御(MPC)と確率制約を併用した適応型クルーズ制御装置を開発し,確率論的安全性を保証する。
我々は,高忠実度交通シミュレータと実世界の交通データセットを用いてACCアルゴリズムを評価し,安全距離の進路を維持しつつ,車追従の速度追従に対する提案手法の有効性を実証した。
アウト・オブ・ディストリビューションのシナリオについても検討する。
関連論文リスト
- Collision Probability Distribution Estimation via Temporal Difference Learning [0.46085106405479537]
累積衝突確率分布を推定する先駆的なフレームワークであるCollisionProを紹介する。
我々は、強化学習の文脈において、我々の枠組みを定式化し、安全に配慮したエージェントの道を開く。
現実的な自律運転シミュレータを用いて,本フレームワークの総合的な検討を行った。
論文 参考訳(メタデータ) (2024-07-29T13:32:42Z) - Automatic AI controller that can drive with confidence: steering vehicle with uncertainty knowledge [3.131134048419781]
本研究は,機械学習フレームワークを用いた車両の横方向制御システムの開発に焦点をあてる。
確率論的学習モデルであるベイズニューラルネットワーク(BNN)を用いて不確実性定量化に対処する。
信頼しきい値を確立することで、手動による介入をトリガーし、安全なパラメータの外で動作した場合に、制御がアルゴリズムから解放されることを保証できます。
論文 参考訳(メタデータ) (2024-04-24T23:22:37Z) - QuAD: Query-based Interpretable Neural Motion Planning for Autonomous Driving [33.609780917199394]
自動運転車は環境を理解して適切な行動を決定する必要がある。
従来のシステムは、シーン内のエージェントを見つけるためにオブジェクト検出に依存していた。
我々は、最初に占有する時間的自律性を知覚するカスケードモジュールから遠ざかる、統一的で解釈可能で効率的な自律フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-01T21:11:43Z) - Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems [8.561553195784017]
本稿では,実行時認識攻撃下での深層ニューラルネットワークを用いたACCシステムのセキュリティ評価を行う。
攻撃を誘発する最も重要な時間を選択するための文脈認識戦略を提案する。
提案攻撃の有効性を,実車,公用運転データセット,現実的なシミュレーションプラットフォームを用いて評価した。
論文 参考訳(メタデータ) (2023-07-18T03:12:03Z) - Safe Navigation in Unstructured Environments by Minimizing Uncertainty
in Control and Perception [5.46262127926284]
制御と知覚の不確実性は、非構造環境における自動運転車のナビゲーションに課題をもたらす。
本稿では,安全かつ信頼性の高いナビゲーションを実現するために,制御と認識の不確実性を最小化するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-26T11:24:03Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
駆動シナリオにおける自己教師付き単眼深度推定は、教師付きアプローチに匹敵する性能を達成した。
本稿では,自己監督型深度推定フレームワーク上に費用効率の高いレーダデータを利用する新しい手法であるR4Dynを提案する。
論文 参考訳(メタデータ) (2021-08-10T17:57:03Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。