論文の概要: Role of Locality and Weight Sharing in Image-Based Tasks: A Sample Complexity Separation between CNNs, LCNs, and FCNs
- arxiv url: http://arxiv.org/abs/2403.15707v1
- Date: Sat, 23 Mar 2024 03:57:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:32:08.085289
- Title: Role of Locality and Weight Sharing in Image-Based Tasks: A Sample Complexity Separation between CNNs, LCNs, and FCNs
- Title(参考訳): 画像ベースタスクにおける局所性と重み共有の役割:CNN,LCN,FCN間のサンプル複雑度分離
- Authors: Aakash Lahoti, Stefani Karp, Ezra Winston, Aarti Singh, Yuanzhi Li,
- Abstract要約: 視覚タスクは局所性と翻訳不変性の特性によって特徴づけられる。
これらのタスクにおける畳み込みニューラルネットワーク(CNN)の優れた性能は、そのアーキテクチャに埋め込まれた局所性や重み付けの帰納的バイアスに起因する。
CNNにおけるこれらのバイアスの統計的利点を、局所連結ニューラルネットワーク(LCN)と完全連結ニューラルネットワーク(FCN)で定量化しようとする試みは、以下のカテゴリに分類される。
- 参考スコア(独自算出の注目度): 42.551773746803946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision tasks are characterized by the properties of locality and translation invariance. The superior performance of convolutional neural networks (CNNs) on these tasks is widely attributed to the inductive bias of locality and weight sharing baked into their architecture. Existing attempts to quantify the statistical benefits of these biases in CNNs over locally connected convolutional neural networks (LCNs) and fully connected neural networks (FCNs) fall into one of the following categories: either they disregard the optimizer and only provide uniform convergence upper bounds with no separating lower bounds, or they consider simplistic tasks that do not truly mirror the locality and translation invariance as found in real-world vision tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution (DSD) classification task that models an image as consisting of $k$ patches, each of dimension $d$, and the label is determined by a $d$-sparse signal vector that can freely appear in any one of the $k$ patches. On this task, for any orthogonally equivariant algorithm like gradient descent, we prove that CNNs require $\tilde{O}(k+d)$ samples, whereas LCNs require $\Omega(kd)$ samples, establishing the statistical advantages of weight sharing in translation invariant tasks. Furthermore, LCNs need $\tilde{O}(k(k+d))$ samples, compared to $\Omega(k^2d)$ samples for FCNs, showcasing the benefits of locality in local tasks. Additionally, we develop information theoretic tools for analyzing randomized algorithms, which may be of interest for statistical research.
- Abstract(参考訳): 視覚タスクは局所性と翻訳不変性の特性によって特徴づけられる。
これらのタスクにおける畳み込みニューラルネットワーク(CNN)の優れた性能は、そのアーキテクチャに埋め込まれた局所性や重み付けの帰納的バイアスに起因する。
局所連結畳み込みニューラルネットワーク(LCN)と完全連結ニューラルネットワーク(FCN)によるCNNにおけるこれらのバイアスの統計的利点の定量化の試みは、オプティマイザを無視し、下位境界を分離せずに一様収束した上界のみを提供するか、現実のビジョンタスクで見られるような局所性と翻訳不変性を真に反映しない単純なタスクを考えるかのいずれかに分類される。
これらの欠陥に対処するため,イメージを$k$のパッチでモデル化した動的信号分布(DSD)分類タスクを導入し,そのラベルは$d$のスパース信号ベクトルによって決定され,$k$のパッチのいずれかに自由に表示することができる。
このタスクでは、勾配降下のような直交同変アルゴリズムに対して、CNNが$\tilde{O}(k+d)$サンプルを必要とするのに対し、LCNは$\Omega(kd)$サンプルを必要とすることを証明し、翻訳不変タスクにおける重み共有の統計的利点を確立する。
さらに、LCNには$\tilde{O}(k(k+d))$サンプルが必要であるが、FCNの$\Omega(k^2d)$サンプルはローカルタスクの局所性の利点を示している。
さらに,確率化アルゴリズムを解析するための情報理論ツールを開発した。
関連論文リスト
- Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent [83.85536329832722]
勾配勾配降下(SGD)は,$d$次元ハイパーキューブ上の$k$パリティ問題を効率的に解くことができることを示す。
次に、SGDでトレーニングされたニューラルネットワークがどのようにして、小さな統計的エラーで$k$-parityの問題を解決するかを実証する。
論文 参考訳(メタデータ) (2024-04-18T17:57:53Z) - SGD Finds then Tunes Features in Two-Layer Neural Networks with
near-Optimal Sample Complexity: A Case Study in the XOR problem [1.3597551064547502]
本研究では,2層ニューラルネットワーク上でのミニバッチ降下勾配(SGD)の最適化過程について考察する。
二次 XOR' 関数 $y = -x_ix_j$ でラベル付けされた $d$-dimensional Boolean hypercube から得られるデータから、人口誤差 $o(1)$ と $d :textpolylog(d)$ のサンプルをトレーニングすることが可能であることを証明した。
論文 参考訳(メタデータ) (2023-09-26T17:57:44Z) - Theoretical Analysis of Inductive Biases in Deep Convolutional Networks [16.41952363194339]
畳み込みニューラルネットワーク(CNN)における誘導バイアスの理論解析
CNN, ローカル接続ネットワーク(LCN) および完全接続ネットワーク(FCN) の性能を, 簡単な回帰処理で比較する。
LCNが$Omega(d)$サンプルを必要とするのに対して、CNNは$widetildemathcalO(log2d)$サンプルしか必要とせず、重量共有の重要な役割を強調している。
論文 参考訳(メタデータ) (2023-05-15T07:40:07Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
補間系における勾配によって訓練された浅層ニューラルネットワークの一般化と最適化について検討する。
トレーニング損失数は$m=Omega(log4 (n))$ニューロンとニューロンを最小化する。
m=Omega(log4 (n))$のニューロンと$Tapprox n$で、テスト損失のトレーニングを$tildeO (1/)$に制限します。
論文 参考訳(メタデータ) (2023-02-18T05:06:15Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
無限幅挙動からこの分散制限状態への遷移をサンプルサイズ$P$とネットワーク幅$N$の関数として検討する。
有限サイズ効果は、ReLUネットワークによる回帰のために、$P* sim sqrtN$の順序で非常に小さなデータセットに関係があることが分かる。
論文 参考訳(メタデータ) (2022-12-23T04:48:04Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
2層ReLUネットワークに必要なニューロン数を著しく削減する方法を示す。
また、事前の作業を改善するための新しい下位境界を証明し、ある仮定の下では、最善を尽くすことができることを証明します。
論文 参考訳(メタデータ) (2022-06-26T06:51:31Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - High-Dimensional Inference over Networks: Linear Convergence and
Statistical Guarantees [20.701475313495884]
エージェントネットワーク上の疎線形回帰を非指向グラフとしてモデル化し,サーバノードを持たない。
分布予測勾配追跡に基づくアルゴリズムの収束率と統計的保証を解析する。
論文 参考訳(メタデータ) (2022-01-21T01:26:08Z) - Distributed Sparse Feature Selection in Communication-Restricted
Networks [6.9257380648471765]
疎線形回帰と特徴選択のための新しい分散スキームを提案し,理論的に解析する。
データセット全体から因果次元を推定するために,ネットワーク内の情報共有をシンプルかつ効果的に行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T05:02:24Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。