Fast Quantum Convolutional Neural Networks for Low-Complexity Object
Detection in Autonomous Driving Applications
- URL: http://arxiv.org/abs/2401.01370v1
- Date: Thu, 28 Dec 2023 00:38:10 GMT
- Title: Fast Quantum Convolutional Neural Networks for Low-Complexity Object
Detection in Autonomous Driving Applications
- Authors: Hankyul Baek, Donghyeon Kim, and Joongheon Kim
- Abstract summary: A quantum convolution-based object detection (QCOD) is proposed to perform object detection at high speed.
The QCOD utilizes our proposed fast quantum convolution that uploads input channel information and re-constructs output channels.
Our experiments with KITTI autonomous driving object detection dataset verify that the proposed fast quantum convolution and QCOD are successfully operated in real object detection applications.
- Score: 18.34157974553066
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spurred by consistent advances and innovation in deep learning, object
detection applications have become prevalent, particularly in autonomous
driving that leverages various visual data. As convolutional neural networks
(CNNs) are being optimized, the performances and computation speeds of object
detection in autonomous driving have been significantly improved. However, due
to the exponentially rapid growth in the complexity and scale of data used in
object detection, there are limitations in terms of computation speeds while
conducting object detection solely with classical computing. Motivated by this,
quantum convolution-based object detection (QCOD) is proposed to adopt quantum
computing to perform object detection at high speed. The QCOD utilizes our
proposed fast quantum convolution that uploads input channel information and
re-constructs output channels for achieving reduced computational complexity
and thus improving performances. Lastly, the extensive experiments with KITTI
autonomous driving object detection dataset verify that the proposed fast
quantum convolution and QCOD are successfully operated in real object detection
applications.
Related papers
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - Quantum Convolutional Neural Networks for Multi-Channel Supervised
Learning [0.0]
We present a variety of hardware-adaptable quantum circuit ansatzes for use as convolutional kernels.
We demonstrate that the quantum neural networks we report outperform existing QCNNs on classification tasks involving multi-channel data.
arXiv Detail & Related papers (2023-05-30T11:48:12Z) - Lightweight Delivery Detection on Doorbell Cameras [9.735137325682825]
In this work we investigate an important home application, video based delivery detection, and present a simple lightweight pipeline for this task.
Our method relies on motionconstrained to generate a set of coarse activity cues followed by their classification with a mobile-friendly 3DCNN network.
arXiv Detail & Related papers (2023-05-13T01:28:28Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.