論文の概要: Towards a \textbf{RAG}-based Summarization Agent for the Electron-Ion Collider
- arxiv url: http://arxiv.org/abs/2403.15729v1
- Date: Sat, 23 Mar 2024 05:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:22:21.681710
- Title: Towards a \textbf{RAG}-based Summarization Agent for the Electron-Ion Collider
- Title(参考訳): 電子イオン衝突型加速器におけるテキストbf{RAG}に基づく要約エージェントの実現に向けて
- Authors: Karthik Suresh, Neeltje Kackar, Luke Schleck, Cristiano Fanelli,
- Abstract要約: A Retrieval Augmented Generation (RAG)ベースのEIC用要約AI(RAGS4EIC)が開発中である。
このAIエージェントは情報を凝縮するだけでなく、関連する応答を効果的に参照する。
まず、関連するすべての実験情報を含む包括的ベクトルデータベースを問合せし、次に、Large Language Model(LLM)を用いて、ユーザクエリと検索データに基づく引用に富んだ簡潔な要約を生成する。
- 参考スコア(独自算出の注目度): 0.5504260452953508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity and sheer volume of information encompassing documents, papers, data, and other resources from large-scale experiments demand significant time and effort to navigate, making the task of accessing and utilizing these varied forms of information daunting, particularly for new collaborators and early-career scientists. To tackle this issue, a Retrieval Augmented Generation (RAG)--based Summarization AI for EIC (RAGS4EIC) is under development. This AI-Agent not only condenses information but also effectively references relevant responses, offering substantial advantages for collaborators. Our project involves a two-step approach: first, querying a comprehensive vector database containing all pertinent experiment information; second, utilizing a Large Language Model (LLM) to generate concise summaries enriched with citations based on user queries and retrieved data. We describe the evaluation methods that use RAG assessments (RAGAs) scoring mechanisms to assess the effectiveness of responses. Furthermore, we describe the concept of prompt template-based instruction-tuning which provides flexibility and accuracy in summarization. Importantly, the implementation relies on LangChain, which serves as the foundation of our entire workflow. This integration ensures efficiency and scalability, facilitating smooth deployment and accessibility for various user groups within the Electron Ion Collider (EIC) community. This innovative AI-driven framework not only simplifies the understanding of vast datasets but also encourages collaborative participation, thereby empowering researchers. As a demonstration, a web application has been developed to explain each stage of the RAG Agent development in detail.
- Abstract(参考訳): 文書、論文、データ、その他大規模な実験から得られた資源を包含する複雑さと膨大な量の情報は、ナビゲートするためのかなりの時間と労力を必要としており、特に新しい協力者や初期の科学者にとって、これらの様々な情報へのアクセスと活用のタスクが要求される。
この問題に対処するため、Retrieval Augmented Generation(RAG)ベースのEIC用要約AI(RAGS4EIC)が開発中である。
このAIエージェントは情報を凝縮するだけでなく、関連する応答を効果的に参照する。
まず、関連するすべての実験情報を含む包括的ベクトルデータベースを問合せし、次に、Large Language Model(LLM)を用いて、ユーザクエリと検索データに基づく引用に富んだ簡潔な要約を生成する。
RAGアセスメント(RAGA)スコアリング機構を用いて応答の有効性を評価する評価手法について述べる。
さらに、要約の柔軟性と精度を提供するプロンプトテンプレートベースの命令チューニングについて述べる。
重要なのは、この実装がワークフロー全体の基盤となるLangChainに依存していることです。
この統合により効率性とスケーラビリティが保証され、Electron Ion Collider (EIC)コミュニティ内のさまざまなユーザグループに対して、スムーズなデプロイメントとアクセシビリティが実現される。
この革新的なAI駆動のフレームワークは、膨大なデータセットの理解を単純化するだけでなく、協力的な参加を促進し、研究者を力づける。
実演として、RAGエージェント開発の各段階を詳細に説明するために、Webアプリケーションが開発されている。
関連論文リスト
- Deploying Large Language Models With Retrieval Augmented Generation [0.21485350418225244]
Retrieval Augmented Generationは、大規模言語モデルのトレーニングセット外のデータソースからの知識を統合するための重要なアプローチとして登場した。
本稿では,LLMとRAGを統合して情報検索を行うパイロットプロジェクトの開発とフィールドテストから得られた知見について述べる。
論文 参考訳(メタデータ) (2024-11-07T22:11:51Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
質問応答(QA)性能を向上させるために設計された,革新的なフレームワークであるSynthRAGを提案する。
SynthRAGは動的コンテンツの構造化に適応的なアウトラインを用いることで従来のモデルを改善する。
Zhihuプラットフォーム上のオンラインデプロイメントでは、SynthRAGの回答が注目すべきユーザエンゲージメントを実現していることが明らかになった。
論文 参考訳(メタデータ) (2024-10-23T09:14:57Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - A Knowledge-Centric Benchmarking Framework and Empirical Study for Retrieval-Augmented Generation [4.359511178431438]
Retrieval-Augmented Generation (RAG)は、検索機構を統合することで生成モデルを強化する。
その利点にもかかわらず、RAGは特に現実世界のクエリを効果的に処理する上で、大きな課題に直面している。
本稿では,これらの課題に対処する新しいRAGベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-03T03:31:37Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
大規模テキストコーパスで事前訓練されたLarge Language Models (LLMs) は、推奨システムを強化するための有望な道を示す。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。