論文の概要: A Comparative Study of Artificial Potential Fields and Safety Filters
- arxiv url: http://arxiv.org/abs/2403.15743v1
- Date: Sat, 23 Mar 2024 07:14:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:12:36.482769
- Title: A Comparative Study of Artificial Potential Fields and Safety Filters
- Title(参考訳): 人工電位場と安全フィルタの比較検討
- Authors: Ming Li, Zhiyong Sun,
- Abstract要約: 人工電位場は,最近普及している制御バリア関数二次プログラム(CBF-QP)の安全性フィルタから導出できることを示す。
我々はCBF-QP安全フィルタの設計を拡張し、制御アフィン構造を特徴とするより一般的な動的モデルに対応する。
- 参考スコア(独自算出の注目度): 10.525846641815788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we have demonstrated that the controllers designed by a classical motion planning tool, namely artificial potential fields (APFs), can be derived from a recently prevalent approach: control barrier function quadratic program (CBF-QP) safety filters. By integrating APF information into the CBF-QP framework, we establish a bridge between these two methodologies. Specifically, this is achieved by employing the attractive potential field as a control Lyapunov function (CLF) to guide the design of the nominal controller, and then the repulsive potential field serves as a reciprocal CBF (RCBF) to define a CBF-QP safety filter. Building on this integration, we extend the design of the CBF-QP safety filter to accommodate a more general class of dynamical models featuring a control-affine structure. This extension yields a special CBF-QP safety filter and a general APF solution suitable for control-affine dynamical models. Through a reach-avoid navigation example, we showcase the efficacy of the developed approaches.
- Abstract(参考訳): 本稿では,従来の動作計画ツール,すなわち人工電位場(APF)によって設計された制御器が,最近普及した制御バリア関数2次プログラム(CBF-QP)の安全性フィルタから導出できることを実証した。
CBF-QPフレームワークにAPF情報を組み込むことで,この2つの手法の橋渡しを行う。
具体的には、制御リャプノフ関数(CLF)として魅力的なポテンシャル場を用いて名目制御器の設計を導出し、反発ポテンシャル場は逆CBF(RCBF)として機能し、CBF-QP安全フィルタを定義する。
この積分に基づいてCBF-QP安全フィルタの設計を拡張し、制御-アフィン構造を特徴とするより一般的な動的モデルに対応する。
この拡張により、特別なCBF-QP安全フィルタと、制御-アフィン力学モデルに適した一般APFソリューションが得られる。
到達回避ナビゲーションの例を通して,開発手法の有効性を示す。
関連論文リスト
- Domain Adaptive Safety Filters via Deep Operator Learning [5.62479170374811]
本稿では,環境パラメータから対応するCBFへのマッピングを学習する自己教師型深層演算子学習フレームワークを提案する。
動的障害物を含むナビゲーションタスクの数値実験により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-18T15:10:55Z) - Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints [50.920465513162334]
入力制約下での動的システムの内部安全集合を最大化するPCBFアルゴリズムを提案する。
逆振り子に対するハミルトン・ヤコビの到達性との比較と,12次元四元数系のシミュレーションにより,その有効性を検証する。
その結果,PCBFは既存の手法を一貫して上回り,入力制約下での安全性を確保した。
論文 参考訳(メタデータ) (2024-10-05T18:45:19Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
本稿では,非アフィン制御系における安全クリティカル制御の問題に対処する。
制御バリア関数(CBF)を用いて,状態制約と制御制約の2次コストの最適化を2次プログラムのシーケンス(QP)にサブ最適化できることが示されている。
我々は,高次CBFをニューラル常微分方程式に基づく学習モデルに差分CBFとして組み込んで,非アフィン制御系の安全性を保証する。
論文 参考訳(メタデータ) (2023-09-06T05:35:48Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Learning Differentiable Safety-Critical Control using Control Barrier
Functions for Generalization to Novel Environments [16.68313219331689]
制御バリア機能(CBF)は、制御システムの安全性を強制するための一般的なツールとなっている。
本稿では,最適化に基づく安全クリティカル制御フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-04T20:43:37Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Safe Exploration in Model-based Reinforcement Learning using Control
Barrier Functions [1.005130974691351]
我々は、最小侵襲の安全管理ポリシーを開発するためにCBFの有益な特性を保持する新しいCBFのクラスを開発する。
我々は,これらのlcbfを学習ベースの制御ポリシーの強化に活用し,安全性を保証し,このアプローチを利用して安全な探索フレームワークを開発する方法を示す。
論文 参考訳(メタデータ) (2021-04-16T15:29:58Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
強化学習フレームワークは、CBFおよびCLF制約に存在するモデル不確実性を学ぶ。
RL-CBF-CLF-QPは、安全制約におけるモデル不確実性の問題に対処する。
論文 参考訳(メタデータ) (2020-04-16T10:51:33Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。