論文の概要: Leveraging Large Language Models for Preliminary Security Risk Analysis: A Mission-Critical Case Study
- arxiv url: http://arxiv.org/abs/2403.15756v1
- Date: Sat, 23 Mar 2024 07:59:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:12:36.466375
- Title: Leveraging Large Language Models for Preliminary Security Risk Analysis: A Mission-Critical Case Study
- Title(参考訳): 予備的セキュリティリスク分析のための大規模言語モデルの活用:ミッションクリティカルケーススタディ
- Authors: Matteo Esposito, Francesco Palagiano,
- Abstract要約: PSRAにおけるヒトの専門家の速度と精度は応答時間に大きく影響した。
PSRAにおける細調整モデル(FTM)の能力について先行研究は行われていない。
提案手法は,PSRAの誤りの低減,セキュリティリスク検出の迅速化,偽陽性と否定の最小化に成功している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preliminary security risk analysis (PSRA) provides a quick approach to identify, evaluate and propose remeditation to potential risks in specific scenarios. The extensive expertise required for an effective PSRA and the substantial ammount of textual-related tasks hinder quick assessments in mission-critical contexts, where timely and prompt actions are essential. The speed and accuracy of human experts in PSRA significantly impact response time. A large language model can quickly summarise information in less time than a human. To our knowledge, no prior study has explored the capabilities of fine-tuned models (FTM) in PSRA. Our case study investigates the proficiency of FTM to assist practitioners in PSRA. We manually curated 141 representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years.We compared the proficiency of the FTM versus seven human experts. Within the industrial context, our approach has proven successful in reducing errors in PSRA, hastening security risk detection, and minimizing false positives and negatives. This translates to cost savings for the company by averting unnecessary expenses associated with implementing unwarranted countermeasures. Therefore, experts can focus on more comprehensive risk analysis, leveraging LLMs for an effective preliminary assessment within a condensed timeframe.
- Abstract(参考訳): 予備的セキュリティリスク分析(PSRA)は、特定のシナリオにおける潜在的なリスクを識別し、評価し、対処するための迅速なアプローチを提供する。
効果的なPSRAに必要な広範な専門知識と大量のテキスト関連タスクは、ミッションクリティカルな状況において、タイムリーかつ迅速な行動が不可欠である迅速な評価を妨げる。
PSRAにおけるヒトの専門家の速度と精度は応答時間に大きく影響した。
大きな言語モデルは、人間よりも少ない時間で情報を素早く要約することができる。
我々の知る限り、PSRAにおける細調整モデル(FTM)の能力について事前の研究は行われていない。
本症例では,PSRAの実践者を支援するためのFTMの熟練度について検討した。
我々は過去5年間に50以上のミッションクリティカルな分析チームによって収集された141件のサンプルを手作業で収集し、FTMの熟練度を7人の人間専門家と比較した。
産業環境では,PSRAの誤りの低減,セキュリティリスクの検出の迅速化,偽陽性と否定の最小化に成功している。
これは、不当な対策の実施に伴う不要な費用を回避し、企業のコスト削減に繋がる。
したがって、専門家はより包括的なリスク分析に焦点を絞ることができる。
関連論文リスト
- Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - Explainable Artificial Intelligence Techniques for Irregular Temporal Classification of Multidrug Resistance Acquisition in Intensive Care Unit Patients [7.727213847237959]
本研究では,GRU(Gated Recurrent Units)と高度な内在的・ポストホック的解釈可能性技術を統合した新しい手法を提案する。
ICU患者に対するMDR(Multidrug-Resistant)感染に関連する危険因子の特定を目的とした。
論文 参考訳(メタデータ) (2024-07-24T11:12:01Z) - InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
本稿では,リスク行動が実行される前に,潜在的なエラーを積極的に検出する新しい手法であるInferActを紹介する。
InferActは人間のプロキシとして機能し、安全でないアクションを検出し、ユーザーの介入を警告する。
広く使われている3つのタスクの実験は、InferActの有効性を示している。
論文 参考訳(メタデータ) (2024-07-16T15:24:44Z) - Beyond Words: On Large Language Models Actionability in Mission-Critical Risk Analysis [7.098487130130114]
リスク分析の原則はコンテキストレスです。
リスク分析には、国内外の規制や基準に関する膨大な知識が必要である。
大規模な言語モデルは、人間よりも少ない時間で情報を素早く要約することができ、特定のタスクに微調整することができる。
論文 参考訳(メタデータ) (2024-06-11T19:20:27Z) - The Human Factor in Detecting Errors of Large Language Models: A Systematic Literature Review and Future Research Directions [0.0]
2022年11月、OpenAIによるChatGPTのローンチは人工知能の重要な瞬間となった。
大規模言語モデル (LLM) は、様々な領域で顕著な会話能力を示す。
これらのモデルは「幻覚」や省略といった誤りに影響を受けやすく、誤った情報や不完全な情報を生成する。
論文 参考訳(メタデータ) (2024-03-13T21:39:39Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
本稿では,オントロジーを意識したテンポラリティに基づくコントラシブ・サバイバル(OTCSurv)分析フレームワークを提案する。
OTCSurvは、検閲されたデータと観察されたデータの両方から生存期間を使い、時間的特異性を定義する。
急性腎障害(AKI)を発症する危険のある入院患者のリスクを予測するために,大規模なEHRデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-08-24T22:36:22Z) - Just-In-Time Learning for Operational Risk Assessment in Power Grids [12.939739997360016]
再生可能エネルギーのかなりのシェアを持つグリッドでは、オペレーターは運用リスクを評価するための追加のツールが必要である。
本稿では,Just-In-Time Risk Assessment Learning Framework (JITRALF) を代替として提案する。
JITRALFは、リスクを見積もるために必要な量を予測するために、機械学習(ML)を使用して、1日に1時間に1回のリスクサロゲートをトレーニングする。
論文 参考訳(メタデータ) (2022-09-26T15:11:27Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
我々は、様々な利害リスク対策をレビューし、その特性についてコメントする。
我々は,探索と探索のトレードオフが現れる,後悔の最小化設定のためのアルゴリズムを検討する。
今後の研究の課題と肥大化についてコメントし、締めくくりに締めくくります。
論文 参考訳(メタデータ) (2022-05-12T02:20:34Z) - Clinical Risk Prediction with Temporal Probabilistic Asymmetric
Multi-Task Learning [80.66108902283388]
マルチタスク学習手法は、臨床リスク予測などの安全クリティカルな応用に注意を払って使用すべきである。
既存の非対称なマルチタスク学習手法は、低損失のタスクから高損失のタスクへの知識伝達を行うことにより、この負の伝達問題に対処する。
特徴レベルの不確実性に基づいて,特定のタスク/タイムステップから関連する不確実なタスクへの知識伝達を行う,新しい時間的非対称型マルチタスク学習モデルを提案する。
論文 参考訳(メタデータ) (2020-06-23T06:01:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。