論文の概要: Competing Risks: Impact on Risk Estimation and Algorithmic Fairness
- arxiv url: http://arxiv.org/abs/2508.05435v1
- Date: Thu, 07 Aug 2025 14:25:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.908134
- Title: Competing Risks: Impact on Risk Estimation and Algorithmic Fairness
- Title(参考訳): 競合リスク:リスク推定とアルゴリズムフェアネスへの影響
- Authors: Vincent Jeanselme, Brian Tom, Jessica Barrett,
- Abstract要約: 生存分析(Survival analysis)は、検閲患者として知られる研究期間中に興味のある出来事を経験していない患者のことを指す。
競合するリスクは、しばしば検閲として扱われる。
我々の研究は、競合するリスクを検閲として扱うことが、生存率のかなりのバイアスをもたらし、リスクを体系的に過大評価し、そして批判的に、格差を増幅する理由を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate time-to-event prediction is integral to decision-making, informing medical guidelines, hiring decisions, and resource allocation. Survival analysis, the quantitative framework used to model time-to-event data, accounts for patients who do not experience the event of interest during the study period, known as censored patients. However, many patients experience events that prevent the observation of the outcome of interest. These competing risks are often treated as censoring, a practice frequently overlooked due to a limited understanding of its consequences. Our work theoretically demonstrates why treating competing risks as censoring introduces substantial bias in survival estimates, leading to systematic overestimation of risk and, critically, amplifying disparities. First, we formalize the problem of misclassifying competing risks as censoring and quantify the resulting error in survival estimates. Specifically, we develop a framework to estimate this error and demonstrate the associated implications for predictive performance and algorithmic fairness. Furthermore, we examine how differing risk profiles across demographic groups lead to group-specific errors, potentially exacerbating existing disparities. Our findings, supported by an empirical analysis of cardiovascular management, demonstrate that ignoring competing risks disproportionately impacts the individuals most at risk of these events, potentially accentuating inequity. By quantifying the error and highlighting the fairness implications of the common practice of considering competing risks as censoring, our work provides a critical insight into the development of survival models: practitioners must account for competing risks to improve accuracy, reduce disparities in risk assessment, and better inform downstream decisions.
- Abstract(参考訳): 正確な時間とイベントの予測は、意思決定、医療ガイドライン、雇用決定、資源配分に不可欠である。
生存分析(Survival analysis)は、時間から時間までのデータをモデル化するために用いられる定量的な枠組みであり、研究期間中に興味のある出来事を経験していない患者は検閲された患者と呼ばれる。
しかし、多くの患者は興味ある結果の観察を妨げる出来事を経験する。
これらの競合するリスクは、しばしば検閲として扱われる。
我々の研究は、競合するリスクを検閲として扱うことが、生存率のかなりのバイアスをもたらす理由を理論的に証明し、リスクの体系的過大評価と、批判的に格差を増幅する。
まず、競合するリスクを誤って分類する問題を、生存推定における結果の誤りを検閲し定量化する問題として定式化する。
具体的には,この誤差を推定するフレームワークを開発し,予測性能とアルゴリズム的公正性に対する関連性を実証する。
さらに、人口集団間でのリスクプロファイルの違いが、グループ固有のエラーを招き、既存の格差を悪化させる可能性があるかを検討する。
心血管管理を実証的に分析した結果、競合するリスクを無視することは、これらの事象のリスクが最も多く、不平等をアクセントする可能性が示唆された。
誤りの定量化と、競合するリスクを検閲として考慮する一般的なプラクティスの公平さを強調することにより、我々の研究は、生存モデルの開発に関する重要な洞察を提供する。
関連論文リスト
- HACSurv: A Hierarchical Copula-Based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
本稿では,階層型アルキメデスコピュラス構造を学習する生存分析手法であるHACSurvを紹介する。
リスクと検閲の間の依存関係をキャプチャすることで、HACSurvは生存予測の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-19T18:52:18Z) - Auditing Fairness under Unobserved Confounding [56.61738581796362]
意外なことに、リスクの高い人に対する治療率の有意義な限界を計算できることが示されています。
現実の多くの環境では、リスクの偏りのない見積を導き出すために、アロケーションの前にデータを持っているという事実を使用します。
論文 参考訳(メタデータ) (2024-03-18T21:09:06Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - Neural Fine-Gray: Monotonic neural networks for competing risks [0.0]
生存分析として知られる時間対イベントモデリングは、関心のある出来事を経験していない患者の検閲に対処するため、標準回帰とは異なる。
本稿では、制約付きモノトニックニューラルネットワークを用いて、各サバイバル分布をモデル化する。
このソリューションの有効性は、1つの合成データセットと3つの医療データセットで示される。
論文 参考訳(メタデータ) (2023-05-11T10:27:59Z) - On (assessing) the fairness of risk score models [2.0646127669654826]
リスクモデルは、ユーザに対して潜在的な結果について不確実性を伝えるという事実など、さまざまな理由から関心を集めている。
リスクスコアフェアネスの鍵となるデシダータムとして,異なるグループに類似した価値を提供する。
本稿では,従来提案されていた基準値よりも試料径バイアスが少ない新しい校正誤差指標を提案する。
論文 参考訳(メタデータ) (2023-02-17T12:45:51Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
我々は、様々な利害リスク対策をレビューし、その特性についてコメントする。
我々は,探索と探索のトレードオフが現れる,後悔の最小化設定のためのアルゴリズムを検討する。
今後の研究の課題と肥大化についてコメントし、締めくくりに締めくくります。
論文 参考訳(メタデータ) (2022-05-12T02:20:34Z) - Two steps to risk sensitivity [4.974890682815778]
条件付きバリュー・アット・リスク(CVaR)は、人間と動物の計画のモデル化のためのリスク尺度である。
CVaRに対する従来の分布的アプローチを逐次的に導入し、人間の意思決定者の選択を再分析する。
次に,リスク感度,すなわち時間的整合性,さらに重要な特性について考察し,CVaRの代替案を示す。
論文 参考訳(メタデータ) (2021-11-12T16:27:47Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
本稿では,検閲データを用いた時系列予測問題において,相対リスクを推定するための新しいアプローチについて述べる。
我々のアプローチは、基礎となる生存分布の一定の比例的ハザードの強い仮定を必要としない。
これは検閲の有無で競合するリスクを伴う生存時間を完全にパラメトリックに推定する最初の作品である。
論文 参考訳(メタデータ) (2020-03-02T20:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。