論文の概要: Graph Image Prior for Unsupervised Dynamic MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2403.15770v1
- Date: Sat, 23 Mar 2024 08:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:02:48.454704
- Title: Graph Image Prior for Unsupervised Dynamic MRI Reconstruction
- Title(参考訳): 教師なし動的MRI再構成に先立つグラフ画像
- Authors: Zhongsen Li, Wenxuan Chen, Shuai Wang, Chuyu Liu, Rui Li,
- Abstract要約: Deep Image Prior (DIP) は、Deep Image Prior (DIP) として知られる画像復元の強力な先駆者として機能する。
近年、DIPは非教師なしの動的MRI再構成に利用されており、潜在空間画像空間からの生成モデルを採用している。
本研究では,MRIの動的再構成に先立ってDIPを利用する手法を提案し,GIP (Graph Image Prior) を提案する。
- 参考スコア(独自算出の注目度): 7.236298615925248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inductive bias of the convolutional neural network (CNN) can act as a strong prior for image restoration, which is known as the Deep Image Prior (DIP). In recent years, DIP has been utilized in unsupervised dynamic MRI reconstruction, which adopts a generative model from the latent space to the image space. However, existing methods usually utilize a single pyramid-shaped CNN architecture to parameterize the generator, which cannot effectively exploit the spatio-temporal correlations within the dynamic data. In this work, we propose a novel scheme to exploit the DIP prior for dynamic MRI reconstruction, named ``Graph Image Prior'' (GIP). The generative model is decomposed into two stages: image recovery and manifold discovery, which is bridged by a graph convolutional network to exploit the spatio-temporal correlations. In addition, we devise an ADMM algorithm to alternately optimize the images and the network parameters to further improve the reconstruction performance. Experimental results demonstrate that GIP outperforms compressed sensing methods and unsupervised methods over different sampling trajectories, and significantly reduces the performance gap with the state-of-art supervised deep-learning methods. Moreover, GIP displays superior generalization ability when transferred to a different reconstruction setting, without the need for any additional data.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)の帰納バイアスは、Deep Image Prior(DIP)として知られる画像復元の強い先行として機能する。
近年、DIPは非教師なしの動的MRI再構成に利用されており、潜在空間から画像空間への生成モデルが採用されている。
しかし、既存の手法では1つのピラミッド型のCNNアーキテクチャを使ってジェネレータをパラメータ化しているため、動的データ内の時空間相関を効果的に利用することはできない。
本研究では,MRIの動的再構成に先立ってDIPを利用する新しい手法を提案し,その手法を「Graph Image Prior' (GIP)」と呼ぶ。
生成モデルは、画像回復と多様体発見の2段階に分解され、グラフ畳み込みネットワークによって橋渡しされ、時空間相関を利用する。
さらに、画像とネットワークパラメータを交互に最適化し、再構成性能をさらに向上するADMMアルゴリズムを考案した。
実験結果から, GIPは, 異なるサンプリング軌道上での圧縮センシング法や教師なし手法よりも優れており, 最先端の教師付きディープラーニング手法との性能ギャップを著しく低減することがわかった。
さらに、GIPは、追加のデータを必要とせず、異なる再構成設定に転送する際に、より優れた一般化能力を示す。
関連論文リスト
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
我々は,高度にアンダーサンプリングされた測定値の再構成を行うために,k-spaceとDu-al-Domainコラボレーティブユニバーサル生成モデル(DD-UGM)を提案する。
より正確には、画像領域とk空間領域の両方の先行成分を普遍的な生成モデルで抽出し、これらの先行成分を適応的に処理し、より高速に処理する。
論文 参考訳(メタデータ) (2022-12-15T03:04:48Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction [41.62169556793355]
高速磁気共鳴画像(MRI)取得による画像再構成には,ディープラーニングのアプローチが広く研究されている。
ネットワークの複雑さとパフォーマンスのトレードオフをバランスさせるために、適切なネットワークアーキテクチャを選択する方法が明確ではない。
本稿では,ブートストラップとサブネットワークアグリゲーションを用いて,ニューラルネットワークの表現性を向上する手法を提案する。
論文 参考訳(メタデータ) (2020-03-17T14:18:37Z) - Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction [36.636219616998225]
そこで我々は,手作業ではなくNASによるMR画像再構成問題に対して,新しい,効率的なネットワークを提案する。
実験の結果,検索したネットワークは,従来の最先端手法と比較して,より良好な再構成結果が得られることがわかった。
提案手法は, MR再構成問題に対するコストと再構成性能のトレードオフを, 高い一般化性で向上させることができる。
論文 参考訳(メタデータ) (2020-02-22T04:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。