論文の概要: Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction
- arxiv url: http://arxiv.org/abs/2003.07740v1
- Date: Tue, 17 Mar 2020 14:18:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-22 20:18:54.572526
- Title: Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction
- Title(参考訳): MR再構成のための深部ニューラルネットワークの表現性向上のための幾何学的アプローチ
- Authors: Eunju Cha, Gyutaek Oh, Jong Chul Ye
- Abstract要約: 高速磁気共鳴画像(MRI)取得による画像再構成には,ディープラーニングのアプローチが広く研究されている。
ネットワークの複雑さとパフォーマンスのトレードオフをバランスさせるために、適切なネットワークアーキテクチャを選択する方法が明確ではない。
本稿では,ブートストラップとサブネットワークアグリゲーションを用いて,ニューラルネットワークの表現性を向上する手法を提案する。
- 参考スコア(独自算出の注目度): 41.62169556793355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning approaches have been extensively investigated to
reconstruct images from accelerated magnetic resonance image (MRI) acquisition.
Although these approaches provide significant performance gain compared to
compressed sensing MRI (CS-MRI), it is not clear how to choose a suitable
network architecture to balance the trade-off between network complexity and
performance. Recently, it was shown that an encoder-decoder convolutional
neural network (CNN) can be interpreted as a piecewise linear basis-like
representation, whose specific representation is determined by the ReLU
activation patterns for a given input image. Thus, the expressivity or the
representation power is determined by the number of piecewise linear regions.
As an extension of this geometric understanding, this paper proposes a
systematic geometric approach using bootstrapping and subnetwork aggregation
using an attention module to increase the expressivity of the underlying neural
network. Our method can be implemented in both k-space domain and image domain
that can be trained in an end-to-end manner. Experimental results show that the
proposed schemes significantly improve reconstruction performance with
negligible complexity increases.
- Abstract(参考訳): 近年,加速磁気共鳴画像(MRI)取得による画像再構成のために,ディープラーニング手法が広く研究されている。
これらの手法は, 圧縮センシングMRI (CS-MRI) と比較して大きな性能向上をもたらすが, ネットワーク複雑性と性能のトレードオフのバランスをとるために, 適切なネットワークアーキテクチャを選択するかは明らかになっていない。
近年、エンコーダ・デコーダ畳み込みニューラルネットワーク(cnn)は、与えられた入力画像に対するreluアクティベーションパターンによって特定表現が決定される分割線形基底的表現として解釈できることが示された。
これにより、表現性または表現力は分割線形領域の数によって決定される。
この幾何学的理解の延長として,本論文では,アテンションモジュールを用いたブートストラップとサブネットワークアグリゲーションを用いた体系的幾何学的アプローチを提案する。
本手法は, エンドツーエンドで訓練可能なk空間領域と画像領域の両方で実装することができる。
実験の結果, 提案手法は複雑度が向上し, 復元性能が著しく向上することがわかった。
関連論文リスト
- Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction [10.330083869344445]
グラフ画像優先(GIP)と呼ばれる動的MRI表現のための新しい手法を提案する。
GIPは2段階生成ネットワークを新しいモデリング手法に採用し、まず独立したCNNを用いて各フレームのイメージ構造を復元する。
グラフ畳み込みネットワークは特徴融合と画像生成に利用される。
論文 参考訳(メタデータ) (2024-03-23T08:57:46Z) - Deep Learning-based MRI Reconstruction with Artificial Fourier Transform (AFT)-Net [14.146848823672677]
複合価値ディープラーニングフレームワーク-Artificial Fourier Transform Network (AFTNet)を導入する。
AFTNetは、ドメイン変換における画像逆問題の解決に容易に利用できる。
AFTNetは既存のアプローチに比べ,MRIの高速化に優れることを示す。
論文 参考訳(メタデータ) (2023-12-18T02:50:45Z) - Image segmentation with traveling waves in an exactly solvable recurrent
neural network [71.74150501418039]
繰り返しニューラルネットワークは、シーンの構造特性に応じて、画像をグループに効果的に分割できることを示す。
本稿では,このネットワークにおけるオブジェクトセグメンテーションのメカニズムを正確に記述する。
次に、グレースケール画像中の単純な幾何学的対象から自然画像まで、入力をまたいで一般化するオブジェクトセグメンテーションの簡単なアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-11-28T16:46:44Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing [8.902545322578925]
提案フレームワークには,サンプリングサブネットワークと再構築サブネットワークという2つのサブネットワークが含まれている。
再構成サブネットワークでは、スタックド・デノイング・オートエンコーダ(SDA)と畳み込みニューラルネットワーク(CNN)を組み合わせたカスケードネットワークが信号の再構成のために設計されている。
このフレームワークは、特にサンプリングレートの低い他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-11-11T02:20:30Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
本稿では,ロバスト主成分分析(RPCA)問題に対するディープアンフォールディングに基づくネットワーク設計を提案する。
既存の設計とは異なり,本手法は連続するビデオフレームのスパース表現間の時間的相関をモデル化することに焦点を当てている。
移動MNISTデータセットを用いた実験により、提案したネットワークは、ビデオフォアグラウンドとバックグラウンドの分離作業において、最近提案された最先端のRPCAネットワークより優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T11:40:09Z) - Deep Parallel MRI Reconstruction Network Without Coil Sensitivities [4.559089047554929]
並列MRI(pMRI)における高速画像再構成のための頑健な近位勾配スキームをデータからトレーニングした正規化関数にマッピングすることにより,新しいディープニューラルネットワークアーキテクチャを提案する。
提案するネットワークは,不完全なpMRIデータからのマルチコイル画像と均一なコントラストとを適応的に組み合わせることを学び,非線形エンコーダに渡されて画像のスパース特徴を効率的に抽出する。
論文 参考訳(メタデータ) (2020-08-04T08:39:36Z) - Deep Low-rank Prior in Dynamic MR Imaging [30.70648993986445]
本稿では、学習可能な低ランクをディープネットワークアーキテクチャに導入するための2つの新しいスキームを紹介する。
本研究では,SLR-Netと呼ばれるダイナミックMRイメージングのためのモデルベースアンローリングスパースとローランクネットワークを提案する。
プラグ・アンド・プレイ方式では、他の動的MRニューラルネットワークに簡単に組み込むことができるプラグ・アンド・プレイLRネットワークモジュールを提案する。
論文 参考訳(メタデータ) (2020-06-22T09:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。