論文の概要: Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2403.15770v2
- Date: Tue, 25 Jun 2024 07:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 20:09:17.394979
- Title: Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction
- Title(参考訳): 教師なし動的心内膜MRIのグラフ画像化
- Authors: Zhongsen Li, Wenxuan Chen, Shuai Wang, Chuyu Liu, Qing Zou, Rui Li,
- Abstract要約: グラフ画像優先(GIP)と呼ばれる動的MRI表現のための新しい手法を提案する。
GIPは2段階生成ネットワークを新しいモデリング手法に採用し、まず独立したCNNを用いて各フレームのイメージ構造を復元する。
グラフ畳み込みネットワークは特徴融合と画像生成に利用される。
- 参考スコア(独自算出の注目度): 10.330083869344445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inductive bias of the convolutional neural network (CNN) can be a strong prior for image restoration, which is known as the Deep Image Prior (DIP). Recently, DIP is utilized in unsupervised dynamic MRI reconstruction, which adopts a generative model from the latent space to the image space. However, existing methods usually use a pyramid-shaped CNN generator shared by all frames, embedding the temporal modeling within the latent space, which may hamper the model expression capability. In this work, we propose a novel scheme for dynamic MRI representation, named ``Graph Image Prior'' (GIP). GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame, and then exploits the spatio-temporal correlations within the feature space parameterized by a graph model. A graph convolutional network is utilized for feature fusion and dynamic image generation. In addition, we devise an ADMM algorithm to alternately optimize the images and the network parameters to improve the reconstruction performance. Experiments were conducted on cardiac cine MRI reconstruction, which demonstrate that GIP outperforms compressed sensing methods and other DIP-based unsupervised methods, significantly reducing the performance gap with state-of-the-art supervised algorithms. Moreover, GIP displays superior generalization ability when transferred to a different reconstruction setting, without the need for any additional data.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)の帰納バイアスは、Deep Image Prior(DIP)として知られる画像復元の強い先行である。
近年、DIPは非教師なしの動的MRI再構成に利用されており、潜在空間から画像空間への生成モデルが採用されている。
しかし、既存の手法は通常、すべてのフレームで共有されるピラミッド型のCNNジェネレータを使用し、時間的モデリングを潜在空間に埋め込むことで、モデル表現能力を阻害する可能性がある。
本稿では,動的MRI表現のための新しい手法である ``Graph Image Prior' (GIP) を提案する。
GIPは、まず独立したCNNを用いて各フレームのイメージ構造を復元し、次にグラフモデルによりパラメータ化された特徴空間内の時空間相関を利用する。
グラフ畳み込みネットワークは特徴融合と動的画像生成に利用される。
さらに、画像とネットワークパラメータを交互に最適化し、再構成性能を向上させるためのADMMアルゴリズムを考案した。
心血管MRI再建実験では、GIPは圧縮センシング法や他のDIPに基づく教師なし手法よりも優れており、最先端の教師付きアルゴリズムによるパフォーマンスギャップを著しく減少させることが示された。
さらに、GIPは、追加のデータを必要とせず、異なる再構成設定に転送する際に、より優れた一般化能力を示す。
関連論文リスト
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
心臓画像の分野では, 深層学習(DL)を用いたシネ・マルチコントラスト再建法を提案する。
提案手法は画像領域とk空間領域の両方を最適化し,高い再構成精度を実現する。
論文 参考訳(メタデータ) (2023-10-10T13:46:11Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
我々は,高度にアンダーサンプリングされた測定値の再構成を行うために,k-spaceとDu-al-Domainコラボレーティブユニバーサル生成モデル(DD-UGM)を提案する。
より正確には、画像領域とk空間領域の両方の先行成分を普遍的な生成モデルで抽出し、これらの先行成分を適応的に処理し、より高速に処理する。
論文 参考訳(メタデータ) (2022-12-15T03:04:48Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction [41.62169556793355]
高速磁気共鳴画像(MRI)取得による画像再構成には,ディープラーニングのアプローチが広く研究されている。
ネットワークの複雑さとパフォーマンスのトレードオフをバランスさせるために、適切なネットワークアーキテクチャを選択する方法が明確ではない。
本稿では,ブートストラップとサブネットワークアグリゲーションを用いて,ニューラルネットワークの表現性を向上する手法を提案する。
論文 参考訳(メタデータ) (2020-03-17T14:18:37Z) - Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction [36.636219616998225]
そこで我々は,手作業ではなくNASによるMR画像再構成問題に対して,新しい,効率的なネットワークを提案する。
実験の結果,検索したネットワークは,従来の最先端手法と比較して,より良好な再構成結果が得られることがわかった。
提案手法は, MR再構成問題に対するコストと再構成性能のトレードオフを, 高い一般化性で向上させることができる。
論文 参考訳(メタデータ) (2020-02-22T04:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。