論文の概要: Inpainting-Driven Mask Optimization for Object Removal
- arxiv url: http://arxiv.org/abs/2403.15849v1
- Date: Sat, 23 Mar 2024 13:52:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:42:03.649559
- Title: Inpainting-Driven Mask Optimization for Object Removal
- Title(参考訳): 物体除去のための塗装駆動型マスク最適化
- Authors: Kodai Shimosato, Norimichi Ukita,
- Abstract要約: 本稿では,画像塗布による物体除去の品質向上のためのマスク最適化手法を提案する。
本手法では, この領域ギャップを, セグメンテーションにより抽出した物体マスクを用いて塗装ネットワークを訓練することにより解決する。
被塗布用マスクを最適化するために、セグメンテーションネットワークは塗工ネットワークに接続され、塗工性能を向上させるために訓練されたエンド・ツー・エンドに接続される。
- 参考スコア(独自算出の注目度): 15.429649454099085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a mask optimization method for improving the quality of object removal using image inpainting. While many inpainting methods are trained with a set of random masks, a target for inpainting may be an object, such as a person, in many realistic scenarios. This domain gap between masks in training and inference images increases the difficulty of the inpainting task. In our method, this domain gap is resolved by training the inpainting network with object masks extracted by segmentation, and such object masks are also used in the inference step. Furthermore, to optimize the object masks for inpainting, the segmentation network is connected to the inpainting network and end-to-end trained to improve the inpainting performance. The effect of this end-to-end training is further enhanced by our mask expansion loss for achieving the trade-off between large and small masks. Experimental results demonstrate the effectiveness of our method for better object removal using image inpainting.
- Abstract(参考訳): 本稿では,画像塗布による物体除去の品質向上のためのマスク最適化手法を提案する。
多くの塗布法はランダムマスクのセットで訓練されているが、塗布の対象は、多くの現実的なシナリオにおいて、人のような物体である可能性がある。
トレーニングにおけるマスクと推論画像の間の領域ギャップは、塗装作業の難しさを増大させる。
本手法では, この領域ギャップを, セグメンテーションによって抽出された被写体マスクを用いて塗装ネットワークを訓練することにより解決する。
さらに, 被塗布用マスクを最適化するために, セグメンテーションネットワークを塗工ネットワークに接続し, 塗工性能を向上させるためのエンドツーエンド訓練を行う。
このエンド・ツー・エンドトレーニングの効果は,大型マスクと小型マスクのトレードオフを達成するためのマスク拡張損失によってさらに強化される。
画像塗布による物体除去法の有効性を実験的に検証した。
関連論文リスト
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
論文 参考訳(メタデータ) (2023-12-22T02:31:31Z) - Completing Visual Objects via Bridging Generation and Segmentation [84.4552458720467]
MaskCompは、生成とセグメンテーションの反復的な段階を通して完了プロセスを記述する。
各イテレーションにおいて、オブジェクトマスクは、画像生成を促進する追加条件として提供される。
我々は,1世代と1つのセグメンテーション段階の組み合わせがマスマスデノイザーとして効果的に機能することを実証した。
論文 参考訳(メタデータ) (2023-10-01T22:25:40Z) - PaintSeg: Training-free Segmentation via Painting [50.17936803209125]
PaintSegは、トレーニングなしでオブジェクトをセグメンテーションするための新しい教師なしのメソッドである。
前者は前景をマスキングして背景を埋め、後者は前景の欠落部分を回復しながら背景をマスキングする。
実験の結果、PaintSegは、粗いマスクプロンプト、ボックスプロンプト、ポイントプロンプトセグメンテーションタスクにおいて、既存のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-30T20:43:42Z) - AURA : Automatic Mask Generator using Randomized Input Sampling for Object Removal [26.81218265405809]
本稿では,オフザシェルフ・イメージ・インパインティング・ネットワークを用いて,オブジェクトをよりよく除去するための入力マスクの生成に焦点をあてる。
本稿では,AI (XAI) 法にヒントを得た自動マスク生成手法を提案する。
実験により,本手法はセマンティックセグメンテーションマップから生成されたマスクよりも,ターゲットクラスオブジェクトの除去性能が向上していることが確認された。
論文 参考訳(メタデータ) (2023-05-13T07:51:35Z) - Shape-Aware Masking for Inpainting in Medical Imaging [49.61617087640379]
インペイントは、教師なしの医用画像モデル発見のためのディープラーニング技術として成功している。
本稿では, 先行する統計的形状の学習を目的とした, 塗装用形状認識マスクの生成手法を提案する。
市販の塗装モデルとスーパーピクセルオーバーセグメンテーションアルゴリズムに基づく教師なしマスキング手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T18:35:17Z) - Layered Depth Refinement with Mask Guidance [61.10654666344419]
汎用マスクを用いてSIDEモデルの深度予測を洗練させるマスク誘導深度改善の新しい問題を定式化する。
本フレームワークは,奥行きマップをマスクと逆マスクで表される2つの別々の層に分解し,層状改質・塗装・塗装を行う。
本手法は,内面境界領域と外面境界領域の深度を正確に補正し,異なる種類のマスクや初期深度予測に対して堅牢であることを示す。
論文 参考訳(メタデータ) (2022-06-07T06:42:44Z) - Learning Sparse Masks for Diffusion-based Image Inpainting [10.633099921979674]
拡散ベースの塗布はスパースデータから画像の再構成に強力なツールである。
我々は高効率な適応マスク生成モデルを提供する。
実験により,我々のモデルは最大4桁の加速度で競争品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-10-06T10:20:59Z) - Iterative Facial Image Inpainting using Cyclic Reverse Generator [0.913755431537592]
Cyclic Reverse Generator (CRG)アーキテクチャはエンコーダジェネレータモデルを提供する。
提案モデルを用いて実写画像を生成するには,数回の反復しか十分でないことを実証的に観察した。
本手法では,様々なマスクタイプを用いてスケッチベースのインペインティングを適用でき,多種多様な結果が得られる。
論文 参考訳(メタデータ) (2021-01-18T12:19:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。