論文の概要: MatchSeg: Towards Better Segmentation via Reference Image Matching
- arxiv url: http://arxiv.org/abs/2403.15901v1
- Date: Sat, 23 Mar 2024 18:04:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 20:32:18.560067
- Title: MatchSeg: Towards Better Segmentation via Reference Image Matching
- Title(参考訳): MatchSeg: 参照画像マッチングによるセグメンテーションの改善を目指す
- Authors: Ruiqiang Xiao, Jiayu Huo, Haotian Zheng, Yang Liu, Sebastien Ourselin, Rachel Sparks,
- Abstract要約: ほとんどショットラーニングは、サポートセットとして知られる小さなラベル付きデータセットを使用して、新しいラベル付きイメージの予測ラベルをガイドすることで、注釈付きデータの必要性を克服することを目的としている。
このパラダイムに着想を得たMatchSegは,戦略的基準画像マッチングによる医用画像のセグメンテーションを強化する新しいフレームワークである。
- 参考スコア(独自算出の注目度): 5.55078598520531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, automated medical image segmentation methods based on deep learning have achieved great success. However, they heavily rely on large annotated datasets, which are costly and time-consuming to acquire. Few-shot learning aims to overcome the need for annotated data by using a small labeled dataset, known as a support set, to guide predicting labels for new, unlabeled images, known as the query set. Inspired by this paradigm, we introduce MatchSeg, a novel framework that enhances medical image segmentation through strategic reference image matching. We leverage contrastive language-image pre-training (CLIP) to select highly relevant samples when defining the support set. Additionally, we design a joint attention module to strengthen the interaction between support and query features, facilitating a more effective knowledge transfer between support and query sets. We validated our method across four public datasets. Experimental results demonstrate superior segmentation performance and powerful domain generalization ability of MatchSeg against existing methods for domain-specific and cross-domain segmentation tasks. Our code is made available at https://github.com/keeplearning-again/MatchSeg
- Abstract(参考訳): 近年,深層学習に基づく医用画像の自動分割法は大きな成功を収めている。
しかし、彼らは大きな注釈付きデータセットに大きく依存しており、取得にはコストと時間を要する。
Few-shot Learningは、サポートセットとして知られる小さなラベル付きデータセットを使用して、クエリセットとして知られる新しいラベル付きイメージの予測ラベルをガイドすることで、注釈付きデータの必要性を克服することを目的としている。
このパラダイムに着想を得たMatchSegは,戦略的基準画像マッチングによる医用画像のセグメンテーションを強化する新しいフレームワークである。
我々は,言語画像事前学習(CLIP)を利用して,サポートセットを定義する際に,関連性の高いサンプルを選択する。
さらに,サポート機能とクエリ機能とのインタラクションを強化し,サポート機能とクエリセット間のより効果的な知識伝達を容易にするために,共同注目モジュールを設計する。
提案手法を4つの公開データセットで検証した。
実験の結果,MatchSegの領域分割性能とドメイン一般化能力は,ドメイン固有およびクロスドメインセグメンテーションタスクの既存手法と比較して優れていることが示された。
私たちのコードはhttps://github.com/keeplearning-again/MatchSegで利用可能です。
関連論文リスト
- IFSENet : Harnessing Sparse Iterations for Interactive Few-shot Segmentation Excellence [2.822194296769473]
新しいクラスのセグメンテーションを学ぶために必要な画像の数を減らします。
インタラクティブなセグメンテーション技術は、一度に1つのオブジェクトのセグメンテーションを漸進的に改善することのみに焦点を当てます。
2つの概念を組み合わせることで、新しいクラスのセグメンテーションモデルをトレーニングするのに要する労力を大幅に削減する。
論文 参考訳(メタデータ) (2024-03-22T10:15:53Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
論文 参考訳(メタデータ) (2023-09-11T14:32:04Z) - CorrMatch: Label Propagation via Correlation Matching for
Semi-Supervised Semantic Segmentation [73.89509052503222]
本稿では、CorrMatchと呼ばれる、単純だが実行可能な半教師付きセマンティックセマンティックセマンティックセマンティクス手法を提案する。
相関写像は、同一カテゴリのクラスタリングピクセルを容易に実現できるだけでなく、良好な形状情報も含んでいることを観察する。
我々は,高信頼画素を拡大し,さらに掘り出すために,画素の対の類似性をモデル化して画素伝搬を行う。
そして、相関地図から抽出した正確なクラス非依存マスクを用いて、領域伝搬を行い、擬似ラベルを強化する。
論文 参考訳(メタデータ) (2023-06-07T10:02:29Z) - MIANet: Aggregating Unbiased Instance and General Information for
Few-Shot Semantic Segmentation [6.053853367809978]
既存の少数ショットセグメンテーション手法はメタラーニング戦略に基づいて,サポートセットからインスタンス知識を抽出する。
本稿では,多情報集約ネットワーク(MIANet)を提案する。
PASCAL-5iとCOCO-20iの実験により、MIANetは優れた性能を示し、新しい最先端技術を確立した。
論文 参考訳(メタデータ) (2023-05-23T09:36:27Z) - Few-shot Medical Image Segmentation via Cross-Reference Transformer [3.2634122554914]
Few-shot segmentation(FSS)は、少数のラベル付きサンプルから新しいカテゴリを学習することで、これらの課題に対処する可能性がある。
そこで本研究では,クロス参照変換器を用いた画像分割ネットワークを提案する。
実験の結果,CTデータセットとMRIデータセットの両方で良好な結果が得られた。
論文 参考訳(メタデータ) (2023-04-19T13:05:18Z) - A Joint Framework Towards Class-aware and Class-agnostic Alignment for
Few-shot Segmentation [11.47479526463185]
Few-shotのセグメンテーションは、いくつかの注釈付きサポートイメージが与えられた未確認クラスのオブジェクトをセグメントすることを目的としている。
既存のほとんどのメソッドは、クエリ機能を独立したサポートプロトタイプで縫い付け、混合機能をデコーダに供給することでクエリイメージを分割する。
セグメンテーションを容易にするために,より価値の高いクラス認識とクラス非依存アライメントガイダンスを組み合わせた共同フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-02T17:33:25Z) - Few-shot Segmentation with Optimal Transport Matching and Message Flow [50.9853556696858]
サポート情報を完全に活用するためには、少数ショットのセマンティックセマンティックセグメンテーションが不可欠である。
本稿では,最適輸送マッチングモジュールを備えた通信マッチングネットワーク(CMNet)を提案する。
PASCAL VOC 2012、MS COCO、FSS-1000データセットによる実験により、我々のネットワークは最新の数ショットセグメンテーション性能を新たに達成した。
論文 参考訳(メタデータ) (2021-08-19T06:26:11Z) - Few-Shot Segmentation with Global and Local Contrastive Learning [51.677179037590356]
提案するグローバルローカルコントラスト学習を用いて,ラベルのない画像からクエリ情報を学習するための先行抽出器を提案する。
クエリー画像の以前の領域マップを生成し、オブジェクトの位置を判断し、サポート機能とのクロスインタラクションを行うためのガイダンスを作成する。
ベルとホイッスルを使わずに、提案手法は、数発のセグメンテーションタスクに対して、新しい最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-08-11T15:52:22Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。