IllusionVQA: A Challenging Optical Illusion Dataset for Vision Language Models
- URL: http://arxiv.org/abs/2403.15952v3
- Date: Fri, 9 Aug 2024 14:26:02 GMT
- Title: IllusionVQA: A Challenging Optical Illusion Dataset for Vision Language Models
- Authors: Haz Sameen Shahgir, Khondker Salman Sayeed, Abhik Bhattacharjee, Wasi Uddin Ahmad, Yue Dong, Rifat Shahriyar,
- Abstract summary: We present IllusionVQA: a dataset of challenging optical illusions and hard-to-interpret scenes.
Human evaluation reveals that humans achieve 91.03% and 100% accuracy in comprehension and localization.
- Score: 21.589318022339317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Vision Language Models (VLM) has allowed researchers to investigate the visual understanding of a neural network using natural language. Beyond object classification and detection, VLMs are capable of visual comprehension and common-sense reasoning. This naturally led to the question: How do VLMs respond when the image itself is inherently unreasonable? To this end, we present IllusionVQA: a diverse dataset of challenging optical illusions and hard-to-interpret scenes to test the capability of VLMs in two distinct multiple-choice VQA tasks - comprehension and soft localization. GPT4V, the best performing VLM, achieves 62.99% accuracy (4-shot) on the comprehension task and 49.7% on the localization task (4-shot and Chain-of-Thought). Human evaluation reveals that humans achieve 91.03% and 100% accuracy in comprehension and localization. We discover that In-Context Learning (ICL) and Chain-of-Thought reasoning substantially degrade the performance of Gemini-Pro in the localization task. Tangentially, we discover a potential weakness in the ICL capabilities of VLMs: they fail to locate optical illusions even when the correct answer is in the context window as a few-shot example.
Related papers
- Zero-Shot Visual Reasoning by Vision-Language Models: Benchmarking and Analysis [6.704529554100875]
Vision-language models (VLMs) have shown impressive zero- and few-shot performance on real-world visual question answering benchmarks.
It remains unclear whether a VLM's apparent visual reasoning performance is due to its world knowledge, or due to actual visual reasoning capabilities.
arXiv Detail & Related papers (2024-08-27T14:43:54Z) - BEAF: Observing BEfore-AFter Changes to Evaluate Hallucination in Vision-language Models [20.697019266074747]
Vision language models (VLMs) perceive the world through a combination of a visual encoder and a large language model (LLM)
Recent studies show that VLMs are vulnerable to hallucination.
We introduce new metrics: True Understanding (TU), IGnorance (IG), StuBbornness (SB), and InDecision (ID)
arXiv Detail & Related papers (2024-07-18T12:11:12Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - VCoder: Versatile Vision Encoders for Multimodal Large Language Models [46.95488342139727]
Multimodal Large Language Models (MLLM) have recently achieved impressive performance on vision-language tasks.
However, when prompted to identify or count (perceive) the entities in a given image, existing MLLM systems fail.
We propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs.
arXiv Detail & Related papers (2023-12-21T18:49:47Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
Question-Driven Visual Exploration (QVix) is a novel prompting strategy that enhances the exploratory capabilities of large vision-language models (LVLMs)
QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment.
Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-04T03:18:51Z) - Large Language Models are Visual Reasoning Coordinators [144.67558375045755]
We propose a novel paradigm that coordinates multiple vision-language models for visual reasoning.
We show that our instruction tuning variant, Cola-FT, achieves state-of-the-art performance on visual question answering.
We also show that our in-context learning variant, Cola-Zero, exhibits competitive performance in zero and few-shot settings.
arXiv Detail & Related papers (2023-10-23T17:59:31Z) - Rephrase, Augment, Reason: Visual Grounding of Questions for Vision-Language Models [59.05769810380928]
Rephrase, Augment and Reason (RepARe) is a gradient-free framework that extracts salient details about the image using the underlying vision-language model.
We show that RepARe can result in a 3.85% (absolute) increase in zero-shot accuracy on VQAv2, 6.41%, and 7.94% points increase on A-OKVQA, and VizWiz respectively.
arXiv Detail & Related papers (2023-10-09T16:57:57Z) - Can Vision-Language Models be a Good Guesser? Exploring VLMs for Times
and Location Reasoning [23.33600235294496]
Vision-Language Models (VLMs) are expected to be capable of reasoning with commonsense knowledge as human beings.
This makes us wonder if, based on visual cues, Vision-Language Models can achieve and even outperform human's capability in reasoning times and location.
We propose a two-stage recognitionspace and reasoningspace probing task, applied to discriminative and generative VLMs.
arXiv Detail & Related papers (2023-07-12T13:46:28Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot
Vision-Language Understanding [84.83494254263138]
We propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning.
Our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR.
arXiv Detail & Related papers (2023-07-03T09:03:12Z) - Vision-Language Models for Vision Tasks: A Survey [62.543250338410836]
Vision-Language Models (VLMs) learn rich vision-language correlation from web-scale image-text pairs.
This paper provides a systematic review of visual language models for various visual recognition tasks.
arXiv Detail & Related papers (2023-04-03T02:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.