論文の概要: Knowledge-guided Machine Learning: Current Trends and Future Prospects
- arxiv url: http://arxiv.org/abs/2403.15989v2
- Date: Wed, 1 May 2024 20:57:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 21:31:27.633609
- Title: Knowledge-guided Machine Learning: Current Trends and Future Prospects
- Title(参考訳): 知識誘導型機械学習の現状と将来展望
- Authors: Anuj Karpatne, Xiaowei Jia, Vipin Kumar,
- Abstract要約: また、科学知識誘導機械学習(KGML)の新興分野の研究の現状についても紹介している。
我々は、KGML研究のさまざまな側面について、使用する科学知識の種類、知識-機械学習統合の形式、そして、科学知識をMLに組み込む方法について論じる。
- 参考スコア(独自算出の注目度): 14.783972088722193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an overview of scientific modeling and discusses the complementary strengths and weaknesses of ML methods for scientific modeling in comparison to process-based models. It also provides an introduction to the current state of research in the emerging field of scientific knowledge-guided machine learning (KGML) that aims to use both scientific knowledge and data in ML frameworks to achieve better generalizability, scientific consistency, and explainability of results. We discuss different facets of KGML research in terms of the type of scientific knowledge used, the form of knowledge-ML integration explored, and the method for incorporating scientific knowledge in ML. We also discuss some of the common categories of use cases in environmental sciences where KGML methods are being developed, using illustrative examples in each category.
- Abstract(参考訳): 本稿では,プロセスベースモデルと比較して,科学モデリングにおけるML手法の相補的長所と短所について概説する。
また、科学知識誘導機械学習(KGML)の新興分野における現在の研究状況についても紹介し、MLフレームワークにおける科学知識とデータの両方を使用して、より良い一般化可能性、科学的一貫性、結果の説明可能性を達成することを目標としている。
我々は、KGML研究のさまざまな側面について、使用する科学知識の種類、知識-機械学習統合の形式、そして、科学知識をMLに組み込む方法について論じる。
また,KGML手法が開発されている環境科学におけるユースケースの一般的なカテゴリについても,各カテゴリの例を用いて論じる。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
本稿では,知識利用と進化を含む新しい分類法から知識メカニズムの解析をレビューする。
LLMが学んだ知識、パラメトリック知識の脆弱性の理由、そして解決が難しい潜在的な暗黒知識(仮説)について論じる。
論文 参考訳(メタデータ) (2024-07-22T06:15:59Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
大規模言語モデル(LLM)は、テキストやその他のデータ処理方法に革命をもたらした。
我々は,科学LLM間のクロスフィールドおよびクロスモーダル接続を明らかにすることで,研究ランドスケープのより総合的なビューを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-16T08:03:24Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Opportunities for machine learning in scientific discovery [16.526872562935463]
我々は、科学コミュニティが科学的な発見を達成するために機械学習技術をどのように活用できるかをレビューする。
課題は残るが、MLの原則的利用は基本的な科学的発見のための新たな道を開く。
論文 参考訳(メタデータ) (2024-05-07T09:58:02Z) - Understanding Biology in the Age of Artificial Intelligence [4.299566787216408]
現代生命科学の研究は、生物システムをモデル化するための人工知能のアプローチにますます依存している。
機械学習(ML)モデルは、大規模で複雑なデータセットのパターンを特定するのに有用であるが、生物学におけるその広範な応用は、従来の科学的調査方法から大きく逸脱している。
ここでは,生物現象をモデル化し,科学的知識を進化させるために,MLシステムの設計と応用を導く一般的な原理を同定する。
論文 参考訳(メタデータ) (2024-03-06T23:20:34Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
大規模言語モデル(LLM)は、自然言語理解の強化において、変革的な力として現れてきた。
LLMの応用は従来の言語境界を超えて、様々な科学分野で開発された専門的な言語システムを含んでいる。
AI for Science(AI for Science)のコミュニティで急成長している分野として、科学LLMは包括的な探査を義務付けている。
論文 参考訳(メタデータ) (2024-01-26T05:33:34Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
解釈可能な機械学習は、モデルを論理的に分析して解釈を導出することで解を提供する。
現在のIML研究は、科学的推論にMLモデルを活用するのではなく、MLモデルの監査に重点を置いている。
本稿では、モデルだけでなく、その表現する現象を照らし出すIMLメソッドを定式化した「プロパティ記述子」を設計するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-11T10:13:21Z) - A Hybrid Science-Guided Machine Learning Approach for Modeling and
Optimizing Chemical Processes [0.0]
ハイブリッドプロセスモデリングと最適化は、科学誘導機械学習(SGML)アプローチと組み合わせられる。
MLを用いてモデルを改善するために、直列および並列ハイブリッドモデリングのサブカテゴリの展示を行う。
MLモデルの改善に科学的原則を適用するために、我々は、科学誘導設計、学習、洗練のサブカテゴリについて論じる。
論文 参考訳(メタデータ) (2021-12-02T18:24:13Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。