論文の概要: Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition
- arxiv url: http://arxiv.org/abs/2403.16172v1
- Date: Sun, 24 Mar 2024 14:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 17:15:57.957702
- Title: Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition
- Title(参考訳): 潜時指紋認識のためのMinutia Cylinder CodesとMinutia Patch Embeddingsの融合
- Authors: Yusuf Artan, Bensu Alkan Semiz,
- Abstract要約: 本稿では,潜伏指紋認識に対する融合型局所マッチング手法を提案する。
提案されたアプローチは、これらの手作り機能と、最近提案された深層ニューラルネットワークの組み込み機能を多段階融合アプローチに統合する。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Latent fingerprints are one of the most widely used forensic evidence by law enforcement agencies. However, latent recognition performance is far from the exemplary performance of sensor fingerprint recognition due to deformations and artifacts within these images. In this study, we propose a fusion based local matching approach towards latent fingerprint recognition. Recent latent recognition studies typically relied on local descriptor generation methods, in which either handcrafted minutiae features or deep neural network features are extracted around a minutia of interest, in the latent recognition process. Proposed approach would integrate these handcrafted features with a recently proposed deep neural network embedding features in a multi-stage fusion approach to significantly improve latent recognition results. Effectiveness of the proposed approach has been shown on several public and private data sets. As demonstrated in our experimental results, proposed method improves rank-1 identification accuracy by considerably for real-world datasets when compared to either the single usage of these features or existing state-of-the-art methods in the literature.
- Abstract(参考訳): 潜伏指紋は、法執行機関によって最も広く使われている法医学的証拠の1つである。
しかし,画像中の変形やアーチファクトによるセンサ指紋認識の模範的性能は,潜時認識性能には程遠い。
本研究では,潜伏指紋認識に対する融合型局所マッチング手法を提案する。
近年の潜伏認識研究は、潜伏認識プロセスにおいて、手作りミナミジア特徴または深層ニューラルネットワーク特徴のいずれかがミナミリアの周辺で抽出される局所的な記述子生成法に依存している。
提案されたアプローチは、これらの手作りの機能を、最近提案された深層ニューラルネットワークの埋め込み機能と多段階融合アプローチに統合し、潜在認識結果を著しく改善する。
提案手法の有効性は、いくつかのパブリックデータセットとプライベートデータセットで示されている。
実験結果に示すように,提案手法は,これらの特徴の単一使用法や文献における既存の最先端手法と比較して,実世界のデータセットに対してかなり高い精度でランク1同定精度を向上する。
関連論文リスト
- Latent fingerprint enhancement for accurate minutiae detection [8.996826918574463]
本稿では,GAN(Generative Adversary Network)を用いてLFE(Latent Fingerprint Enhancement)を再定義する手法を提案する。
生成過程の微妙な情報を直接最適化することにより、このモデルは、地味な事例に対して例外的な忠実さを示す強化された潜伏指紋を生成する。
筆者らのフレームワークは, 微小な位置と配向場を統合し, 局所的および構造的指紋の特徴の保存を確実にする。
論文 参考訳(メタデータ) (2024-09-18T08:35:31Z) - Enhancement-Driven Pretraining for Robust Fingerprint Representation
Learning [0.0]
本稿では,強化に基づく事前学習を利用して,頑健な指紋表現を導出する独自の手法を提案する。
公開されている指紋データを用いて実験した結果,検証性能が著しく向上したことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-16T17:36:56Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
接触のない3Dフィンガーナックルパターンは、識別性、距離からの視認性、利便性、利便性により、効果的な生体認証として出現している。
近年、ディープニューラルネットワークの中間機能を複数のスケールで同時に組み込むディープ・フィーチャー・コラボレーティブ・ネットワークが開発されている。
本稿では,3次元指のナックル画像を表現するために,最小次元の識別特徴ベクトルを学習する可能性を検討することにより,本手法を推し進める。
論文 参考訳(メタデータ) (2023-01-07T20:55:16Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
信号品質の認識は、認識率を増大させ、マルチセンサー環境における決定を著しく支援することが見出されている。
本稿では, 指紋画像の向きテンソルを用いて, ノイズ, 構造不足, ぼやけなどの信号障害を, 対称性記述子の助けを借りて定量化する。
定量的な結果は、あらゆる面において品質意識を優先し、認識率を高め、異なるスキルを持つ専門家を効果的かつ効果的に融合させる。
論文 参考訳(メタデータ) (2022-11-24T12:17:49Z) - Pair-Relationship Modeling for Latent Fingerprint Recognition [25.435974669629374]
本稿では,2つの指紋のペア関係を認識の類似性として直接モデル化する手法を提案する。
2つのデータベースに対する実験結果から,提案手法が技術状況より優れていることが示された。
論文 参考訳(メタデータ) (2022-07-02T11:31:31Z) - A high performance fingerprint liveness detection method based on
quality related features [66.41574316136379]
このシステムは、10,500枚以上の実画像と偽画像からなる非常に難しいデータベースでテストされている。
提案手法はマルチシナリオデータセットに対して堅牢であることが証明され、全体の90%が正しく分類されたサンプルである。
論文 参考訳(メタデータ) (2021-11-02T21:09:39Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUGはルールベースで近接性に基づく指紋増強法である。
このデータセット上で最高のパフォーマンスの測位法は、中央値エラーで40%改善され、平均誤差で6%向上した。
論文 参考訳(メタデータ) (2021-02-04T15:59:30Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
深層生成モデルは質的に新しいパフォーマンスレベルを達成した。
この技術がスプーフセンサーに誤用され、ディープフェイクを発生させ、大規模な誤情報を可能にするという懸念がある。
最先端のジェネレーションモデルを責任を持って公開することで、研究者や企業がモデルに指紋を刻むことができます。
論文 参考訳(メタデータ) (2020-12-16T03:51:54Z) - Experimental results on palmvein-based personal recognition by
multi-snapshot fusion of textural features [3.274290296343038]
本研究はパームヴェイン認識のためのテキスト特徴の複数スナップショット融合について検討し,その同定と検証を行った。
本研究の目的は、このことがヤシベイン認識に有効であることを示し、よく知られたベンチマークデータセット上で非常に高い認識率を実現することである。
論文 参考訳(メタデータ) (2020-07-13T11:34:46Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
既存の潜伏指紋登録手法は、主にミツバチ間の対応を確立することに基づいている。
本研究では,一対の指紋間の空間的変換を推定する,最小限の潜伏指紋登録手法を提案する。
提案手法は,特に挑戦的な条件下で,最先端の登録性能を実現する。
論文 参考訳(メタデータ) (2020-05-12T15:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。