Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis
- URL: http://arxiv.org/abs/2403.16212v1
- Date: Sun, 24 Mar 2024 16:11:27 GMT
- Title: Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis
- Authors: Shaojie Li, Haichen Qu, Xinqi Dong, Bo Dang, Hengyi Zang, Yulu Gong,
- Abstract summary: This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease.
Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task.
- Score: 11.295734491885682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring the application of deep learning technologies in the field of medical diagnostics, Magnetic Resonance Imaging (MRI) provides a unique perspective for observing and diagnosing complex neurodegenerative diseases such as Alzheimer Disease (AD). With advancements in deep learning, particularly in Convolutional Neural Networks (CNNs) and the Xception network architecture, we are now able to analyze and classify vast amounts of MRI data with unprecedented accuracy. The progress of this technology not only enhances our understanding of brain structural changes but also opens up new avenues for monitoring disease progression through non-invasive means and potentially allows for precise diagnosis in the early stages of the disease. This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease through a series of innovative data processing and model construction steps. Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task, demonstrating its potential application value in assistive diagnosis. Future research will focus on expanding the dataset, improving model interpretability, and clinical validation to further promote the application of deep learning technology in the medical field, with the hope of bringing earlier diagnosis and more personalized treatment plans to Alzheimer Disease patients.
Related papers
- Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning [0.0]
The rapid global aging trend has led to an increase in dementia cases, including Alzheimer's disease.
Traditional diagnostic techniques, such as cognitive tests, neuroimaging, and biomarker analysis, face significant limitations in sensitivity, accessibility, and cost.
This study explores the potential of machine learning (ML) as a transformative approach to enhance early dementia detection.
arXiv Detail & Related papers (2024-09-05T00:52:59Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Alzheimers Disease Diagnosis by Deep Learning Using MRI-Based Approaches [0.0]
Alzheimer's disease weakens several brain processes (such as memory) and eventually results in death.
Deep learning algorithms are capable of pattern recognition and feature extraction from the inputted raw data.
We analyzed five specific studies focused on Alzheimer's disease diagnosis using MRI-based deep learning algorithms between 2021 and 2023.
arXiv Detail & Related papers (2023-10-26T19:48:08Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
We developed a novel deep learning architecture, MUCRAN, to train a deep learning model on highly heterogeneous clinical data.
We trained MUCRAN using 16,821 clinical T1 Axial brain MRIs collected from Massachusetts General Hospital before 2019.
The model showed a robust performance of over 90% accuracy on newly collected data.
arXiv Detail & Related papers (2022-05-05T18:39:09Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments.
In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes.
arXiv Detail & Related papers (2021-07-19T08:19:34Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.