Alzheimers Disease Diagnosis by Deep Learning Using MRI-Based Approaches
- URL: http://arxiv.org/abs/2310.17755v1
- Date: Thu, 26 Oct 2023 19:48:08 GMT
- Title: Alzheimers Disease Diagnosis by Deep Learning Using MRI-Based Approaches
- Authors: Sarasadat Foroughipoor, Kimia Moradi, Hamidreza Bolhasani
- Abstract summary: Alzheimer's disease weakens several brain processes (such as memory) and eventually results in death.
Deep learning algorithms are capable of pattern recognition and feature extraction from the inputted raw data.
We analyzed five specific studies focused on Alzheimer's disease diagnosis using MRI-based deep learning algorithms between 2021 and 2023.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The most frequent kind of dementia of the nervous system, Alzheimer's
disease, weakens several brain processes (such as memory) and eventually
results in death. The clinical study uses magnetic resonance imaging to
diagnose AD. Deep learning algorithms are capable of pattern recognition and
feature extraction from the inputted raw data. As early diagnosis and stage
detection are the most crucial elements in enhancing patient care and treatment
outcomes, deep learning algorithms for MRI images have recently allowed for
diagnosing a medical condition at the beginning stage and identifying
particular symptoms of Alzheimer's disease. As a result, we aimed to analyze
five specific studies focused on AD diagnosis using MRI-based deep learning
algorithms between 2021 and 2023 in this study. To completely illustrate the
differences between these techniques and comprehend how deep learning
algorithms function, we attempted to explore selected approaches in depth.
Related papers
- Leveraging Deep Learning and Xception Architecture for High-Accuracy MRI Classification in Alzheimer Diagnosis [11.295734491885682]
This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease.
Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task.
arXiv Detail & Related papers (2024-03-24T16:11:27Z) - Automatic Detection of Alzheimer's Disease with Multi-Modal Fusion of
Clinical MRI Scans [8.684668542584701]
15 million Americans will have either clinical AD or mild cognitive impairment by 2060.
We aim to predict the stage of the disease based on two different types of brain MRI scans.
We design an AlexNet-based deep learning model that learns the synergy of complementary information from both T1 and FLAIR MRI scans.
arXiv Detail & Related papers (2023-11-30T04:32:28Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments.
In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes.
arXiv Detail & Related papers (2021-07-19T08:19:34Z) - Experimenting with Knowledge Distillation techniques for performing
Brain Tumor Segmentation [0.0]
Multi-modal magnetic resonance imaging (MRI) is a crucial method for analyzing the human brain.
With varying degrees of severity and detection, properly diagnosing gliomas is one of the most daunting and significant analysis tasks in modern-day medicine.
Our primary focus is on working with different approaches to perform the segmentation of brain tumors in multimodal MRI scans.
arXiv Detail & Related papers (2021-05-24T18:17:01Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.