論文の概要: Low Rank Groupwise Deformations for Motion Tracking in Cardiac Cine MRI
- arxiv url: http://arxiv.org/abs/2403.16240v1
- Date: Sun, 24 Mar 2024 17:12:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:56:25.753251
- Title: Low Rank Groupwise Deformations for Motion Tracking in Cardiac Cine MRI
- Title(参考訳): 心内膜MRIにおける運動追跡のための低位群変形
- Authors: Sean Rendell, Jinming Duan,
- Abstract要約: 本稿では,画像群を対象画像に登録する手法を提案する。
提案手法は,他の最先端手法と比較して,低ランク群方向の変形を生じさせる効果を実証する。
- 参考スコア(独自算出の注目度): 4.051909571680046
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffeomorphic image registration is a commonly used method to deform one image to resemble another. While warping a single image to another is useful, it can be advantageous to warp multiple images simultaneously, such as in tracking the motion of the heart across a sequence of images. In this paper, our objective is to propose a novel method capable of registering a group or sequence of images to a target image, resulting in registered images that appear identical and therefore have a low rank. Moreover, we aim for these registered images to closely resemble the target image. Through experimental evidence, we will demonstrate our method's superior efficacy in producing low-rank groupwise deformations compared to other state-of-the-art approaches.
- Abstract(参考訳): 拡散型画像登録は、ある画像が他の画像と類似するように変形する一般的な方法である。
一つの画像を別の画像にワープすることは有用であるが、複数の画像を同時にワープすることが有利である。
本稿では,対象画像にグループや画像列を登録できる新しい手法を提案する。
さらに,これらの登録画像は,対象画像と密接に類似することを目標としている。
実験により,本手法の低ランク群方向変形に対する優れた効果を,他の最先端手法と比較して実証する。
関連論文リスト
- Mind the Gap Between Prototypes and Images in Cross-domain Finetuning [64.97317635355124]
プロトタイプと画像にそれぞれ異なる変換を適用するために,コントラスト型プロトタイプイメージ適応(CoPA)を提案する。
Meta-Datasetの実験では、CoPAが最先端のパフォーマンスをより効率的に達成できることが示されている。
論文 参考訳(メタデータ) (2024-10-16T11:42:11Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Contrastive Image Synthesis and Self-supervised Feature Adaptation for
Cross-Modality Biomedical Image Segmentation [8.772764547425291]
CISFAは、画像ドメインの翻訳と、クロスモーダルなバイオメディカルなイメージセグメンテーションのための教師なしの機能適応に基づいている。
我々は,片側生成モデルを用いて,入力画像のサンプルパッチと対応する合成画像との重み付けパッチワイドコントラスト損失を付加する。
腹腔・全心に対するCTおよびMRI画像を含むセグメンテーションタスクについて検討した。
論文 参考訳(メタデータ) (2022-07-27T01:49:26Z) - Single Stage Virtual Try-on via Deformable Attention Flows [51.70606454288168]
仮想試行は、ショップ内服と基準人物画像が与えられた写真リアルなフィッティング結果を生成することを目的としている。
マルチフロー推定に変形性アテンションスキームを適用した,変形性アテンションフロー(DAFlow)を新たに開発した。
提案手法は,定性的かつ定量的に最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-07-19T10:01:31Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
現在のディープラーニング(DL)ベースの画像登録アプローチは、畳み込みニューラルネットワークを利用して、ある画像から別の画像への空間変換を学習する。
一対のイメージ内のROIの類似性を最大化する領域整合性制約を持つ新しいデュアルフロー変換ネットワークを提案する。
4つの公開3次元MRIデータセットを用いた実験により,提案手法は精度と一般化において最高の登録性能が得られることを示した。
論文 参考訳(メタデータ) (2021-12-04T05:30:44Z) - Regularized directional representations for medical image registration [4.58890698751733]
構造情報から導出される正規化ベクトル場のアライメントに基づくモノモーダル画像とマルチモーダル画像の登録手法を提案する。
我々の手法は、強度ベース登録と類似したベクトル場を置換することにより、既存の登録フレームワークと直接的に組み合わせることができる。
実験の結果,提案手法は複数の公開画像データセット上での従来の画像アライメントと良好に比較できることがわかった。
論文 参考訳(メタデータ) (2021-11-30T15:46:25Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
本稿では,複数の画像の同時登録を可能にするために,現在の学習ベース画像登録を拡張することを提案する。
本稿では,複数の画像の粘性測地線平均への登録と,利用可能な画像のいずれかを固定画像として使用可能な登録を両立できる汎用的な数学的枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-01T07:37:28Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。