論文の概要: Object Detectors in the Open Environment:Challenges, Solutions, and Outlook
- arxiv url: http://arxiv.org/abs/2403.16271v1
- Date: Sun, 24 Mar 2024 19:32:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:46:40.329044
- Title: Object Detectors in the Open Environment:Challenges, Solutions, and Outlook
- Title(参考訳): オープン環境における物体検出装置:変化・解決・展望
- Authors: Siyuan Liang, Wei Wang, Ruoyu Chen, Aishan Liu, Boxi Wu, Ee-Chien Chang, Xiaochun Cao, Dacheng Tao,
- Abstract要約: ディープラーニングに基づくオブジェクト検出器は、クローズドセットのシナリオで実用的なユーザビリティを示している。
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境オブジェクト検出器に関連する課題と解決策について,新しい,包括的で体系的な理解を提供することを目的とする。
- 参考スコア(独自算出の注目度): 95.3317059617271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the emergence of foundation models, deep learning-based object detectors have shown practical usability in closed set scenarios. However, for real-world tasks, object detectors often operate in open environments, where crucial factors (\eg, data distribution, objective) that influence model learning are often changing. The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors. Unfortunately, current research on object detectors in open environments lacks a comprehensive analysis of their distinctive characteristics, challenges, and corresponding solutions, which hinders their secure deployment in critical real-world scenarios. This paper aims to bridge this gap by conducting a comprehensive review and analysis of object detectors in open environments. We initially identified limitations of key structural components within the existing detection pipeline and propose the open environment object detector challenge framework that includes four quadrants (\ie, out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes. For each quadrant of challenges in the proposed framework, we present a detailed description and systematic analysis of the overarching goals and core difficulties, systematically review the corresponding solutions, and benchmark their performance over multiple widely adopted datasets. In addition, we engage in a discussion of open problems and potential avenues for future research. This paper aims to provide a fresh, comprehensive, and systematic understanding of the challenges and solutions associated with open-environment object detectors, thus catalyzing the development of more solid applications in real-world scenarios.
- Abstract(参考訳): 基礎モデルの出現に伴い、深層学習に基づくオブジェクト検出器は、クローズドセットのシナリオで実用的なユーザビリティを示してきた。
しかし、現実世界のタスクでは、オブジェクト検出器は、しばしばオープンな環境で動作し、モデル学習に影響を与える重要な要因(例えば、データ分散、目的)が頻繁に変化している。
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
残念ながら、現在のオープン環境におけるオブジェクト検出器の研究は、それらの特徴、課題、およびそれに対応するソリューションの包括的な分析を欠いている。
本稿では,オープン環境における物体検出装置の総合的なレビューと解析を行うことにより,このギャップを埋めることを目的とする。
当初我々は、既存の検出パイプラインにおける重要な構造コンポーネントの制限を特定し、データ/ターゲットの変化の次元に基づいて、4つの四分儀(\ie, out-of-domain, out-of-category, robust learning, incremental learning)を含むオープン環境オブジェクト検出挑戦フレームワークを提案しました。
提案するフレームワークにおける課題の4つごとに,その概要と課題の体系的な説明と分析を行い,対応するソリューションを体系的にレビューし,複数の広く採用されているデータセットに対してその性能をベンチマークする。
また,オープンな問題と今後の研究への潜在的道筋についても議論する。
本研究の目的は、オープン環境オブジェクト検出器に関連する課題と解決策について、新しく、包括的で体系的な理解を提供することであり、現実のシナリオにおけるより堅牢なアプリケーションの開発を促進することである。
関連論文リスト
- Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
本研究では,大気散乱と人間の視覚野機構に触発された新しい深層学習フレームワークを提案する。
本研究の目的は, 環境条件下での検知システムの精度と信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-02T04:03:07Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot Object Detection (FSOD)は、少数の学習技術とオブジェクト検出技術を組み合わせて、注釈付きサンプルに制限のある新しいオブジェクトに迅速に適応する。
本稿では,近年のFSOD分野の進歩を概観する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-07T03:37:29Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
オブジェクト検出は、画像やビデオ内のオブジェクトを識別し、ローカライズすることを目的とした、コンピュータビジョンにおける重要なタスクである。
近年のディープラーニングと畳み込みニューラルネットワーク(CNN)の進歩により、オブジェクト検出技術の性能が大幅に向上した。
本稿では,制約のない環境下でのオブジェクト検出技術について,様々な課題,データセット,最先端のアプローチを含む包括的研究を行う。
論文 参考訳(メタデータ) (2023-04-11T15:45:03Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
オブジェクト指向物体検出は、リモートセンシングにおいて最も基本的で困難なタスクの1つである。
近年,ディープラーニング技術を用いたオブジェクト指向物体検出の進歩が目覚ましい。
論文 参考訳(メタデータ) (2023-02-21T06:31:53Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
視線分析はコンピュータビジョンとヒューマン・コンピュータ・インタラクションの分野で重要な研究課題である。
制約のない環境で視線方向を解釈するための重要な手がかりは何か、いくつかのオープンな質問がある。
我々は、これらの基本的な疑問に光を当てるために、様々な視線分析タスクと応用の進捗を概観する。
論文 参考訳(メタデータ) (2021-08-12T00:30:39Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
本稿では, 対向レンズ下での深部物体検出装置の脆弱性を分析し評価するための枠組みを提案する。
提案手法は, リアルタイムオブジェクト検出システムにおいて, 対向行動やリスクを解析するための方法論的ベンチマークとして機能することが実証された。
我々は、このフレームワークが、現実世界のアプリケーションにデプロイされるディープオブジェクト検出器のセキュリティリスクと敵の堅牢性を評価するツールとしても役立つと推測する。
論文 参考訳(メタデータ) (2020-07-11T18:41:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。