論文の概要: Guessing human intentions to avoid dangerous situations in caregiving robots
- arxiv url: http://arxiv.org/abs/2403.16291v1
- Date: Sun, 24 Mar 2024 20:43:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 16:36:49.004080
- Title: Guessing human intentions to avoid dangerous situations in caregiving robots
- Title(参考訳): 介護ロボットの危険な状況を避けるための人間の意図
- Authors: Noé Zapata, Gerardo Pérez, Lucas Bonilla, Pedro Núñez, Pilar Bachiller, Pablo Bustos,
- Abstract要約: 本研究では,人間の危険状況を検出するアルゴリズムを提案する。
ATMにシミュレーションベースのアプローチを導入し、「いいね!」ポリシーを採用し、人々に意図や行動を割り当てる。
このアルゴリズムは既存の認知アーキテクチャの一部として実装され、シミュレーションシナリオでテストされている。
- 参考スコア(独自算出の注目度): 1.3546242205182986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For robots to interact socially, they must interpret human intentions and anticipate their potential outcomes accurately. This is particularly important for social robots designed for human care, which may face potentially dangerous situations for people, such as unseen obstacles in their way, that should be avoided. This paper explores the Artificial Theory of Mind (ATM) approach to inferring and interpreting human intentions. We propose an algorithm that detects risky situations for humans, selecting a robot action that removes the danger in real time. We use the simulation-based approach to ATM and adopt the 'like-me' policy to assign intentions and actions to people. Using this strategy, the robot can detect and act with a high rate of success under time-constrained situations. The algorithm has been implemented as part of an existing robotics cognitive architecture and tested in simulation scenarios. Three experiments have been conducted to test the implementation's robustness, precision and real-time response, including a simulated scenario, a human-in-the-loop hybrid configuration and a real-world scenario.
- Abstract(参考訳): ロボットが社会的に対話するには、人間の意図を解釈し、潜在的な結果を正確に予測する必要がある。
これは、人間のケアのために設計された社会ロボットにとって特に重要である。
本稿では,人間の意図を推論し解釈するためのATMアプローチについて考察する。
本研究では,人間の危険状況を検出するアルゴリズムを提案する。
ATMにシミュレーションベースのアプローチを導入し、「いいね!」ポリシーを採用し、人々に意図や行動を割り当てる。
この戦略を用いて、ロボットは時間制約のある状況下で高い成功率で検出および動作することができる。
このアルゴリズムは、既存のロボット認知アーキテクチャの一部として実装され、シミュレーションシナリオでテストされている。
シミュレーションシナリオ,Human-in-the-loopハイブリッド構成,実世界のシナリオなど,実装の堅牢性,精度,リアルタイム応答をテストするための3つの実験が実施されている。
関連論文リスト
- An Epistemic Human-Aware Task Planner which Anticipates Human Beliefs and Decisions [8.309981857034902]
目的は、制御不能な人間の行動を説明するロボットポリシーを構築することである。
提案手法は,AND-OR探索に基づく新しい計画手法と解法の構築である。
2つの領域における予備的な実験は、1つの新しいものと1つの適応されたもので、フレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-27T08:27:36Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Robust Robot Planning for Human-Robot Collaboration [11.609195090422514]
人間とロボットのコラボレーションにおいて、人間の目的はしばしばロボットに未知である。
本研究では,各目的関数に対して不確実な人間行動(ポリシー)を自動的に生成する手法を提案する。
また,上記の不確実性に対して頑健なロボット計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T16:02:48Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
そこで我々は,人間を意識したロボットグリップを生成する,CoGraspと呼ばれる新しいディープニューラルネットワーク方式を提案する。
実際のロボット実験では,安定グリップの生成において約88%の成功率を達成した。
我々のアプローチは、安全で自然で社会的に認識された人間ロボットオブジェクトのコグラスピング体験を可能にします。
論文 参考訳(メタデータ) (2022-10-06T19:23:25Z) - Two ways to make your robot proactive: reasoning about human intentions,
or reasoning about possible futures [69.03494351066846]
ロボットをアクティブにする方法を2つ検討する。
1つの方法は人間の意図を認識し、あなたが交差しようとしているドアを開くなど、それらを満たすために行動することである。
もう1つの方法は、将来起こりうる脅威や機会を推論し、それを防ぐか、または育てるために行動することである。
論文 参考訳(メタデータ) (2022-05-11T13:33:14Z) - Motion Planning Combines Psychological Safety and Motion Prediction for
a Sense Motive Robot [2.14239637027446]
本稿では,身体的安全性と心理的安全性の両面をカバーすることで,人間の安全問題に対処する。
まず,人間の表情に応じた適応型ロボットの速度制御とステップサイズ調整手法を導入する。
第2に,人間の姿勢や視線方向の急激な変化を検出して人間の動きを予測し,人間の注意が散らばっているかどうかをロボットが推測し,人間の次の動きを予測し,反発力を再構築して衝突を避ける。
論文 参考訳(メタデータ) (2020-09-29T04:19:53Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z) - Quantifying Hypothesis Space Misspecification in Learning from
Human-Robot Demonstrations and Physical Corrections [34.53709602861176]
最近の研究は、ロボットがそのようなインプットを使って意図した目的を学習する方法に焦点を当てている。
本研究では,2種類の人間入力から学習する7自由度ロボットマニピュレータについて実験を行った。
論文 参考訳(メタデータ) (2020-02-03T18:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。