Calibrating Bayesian UNet++ for Sub-Seasonal Forecasting
- URL: http://arxiv.org/abs/2403.16612v2
- Date: Thu, 4 Apr 2024 12:35:33 GMT
- Title: Calibrating Bayesian UNet++ for Sub-Seasonal Forecasting
- Authors: Busra Asan, Abdullah Akgül, Alper Unal, Melih Kandemir, Gozde Unal,
- Abstract summary: Seasonal forecasting is a crucial task when it comes to detecting the extreme heat and colds that occur due to climate change.
Confidence in the predictions should be reliable since a small increase in the temperatures in a year has a big impact on the world.
We show that with a slight trade-off between prediction error and calibration error, it is possible to get more reliable and sharper forecasts.
- Score: 10.412055701639682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seasonal forecasting is a crucial task when it comes to detecting the extreme heat and colds that occur due to climate change. Confidence in the predictions should be reliable since a small increase in the temperatures in a year has a big impact on the world. Calibration of the neural networks provides a way to ensure our confidence in the predictions. However, calibrating regression models is an under-researched topic, especially in forecasters. We calibrate a UNet++ based architecture, which was shown to outperform physics-based models in temperature anomalies. We show that with a slight trade-off between prediction error and calibration error, it is possible to get more reliable and sharper forecasts. We believe that calibration should be an important part of safety-critical machine learning applications such as weather forecasters.
Related papers
- Enforcing tail calibration when training probabilistic forecast models [0.0]
We study how the loss function used to train probabilistic forecast models can be adapted to improve the reliability of forecasts made for extreme events.<n>We demonstrate that state-of-the-art models do not issue calibrated forecasts for extreme wind speeds, and that the calibration of forecasts for extreme events can be improved by suitable adaptations to the loss function during model training.
arXiv Detail & Related papers (2025-06-16T16:51:06Z) - Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events [0.1747623282473278]
We compare weather prediction models and ECMWF's high-resolution forecast (HRES) system in three case studies.
We find evidence that machine learning weather prediction models can achieve similar accuracy to HRES on record-shattering events.
However, extrapolating to extreme conditions may impact machine learning models more severely than HRES.
arXiv Detail & Related papers (2024-04-26T18:18:25Z) - Delving into temperature scaling for adaptive conformal prediction [10.340903334800787]
Conformal prediction, as an emerging uncertainty qualification technique, constructs prediction sets that are guaranteed to contain the true label with pre-defined probability.
We show that current confidence calibration methods (e.g., temperature scaling) normally lead to larger prediction sets in adaptive conformal prediction.
We propose $Conformal$ $Temperature$ $Scaling$ (ConfTS), a variant of temperature scaling that aims to improve the efficiency of adaptive conformal prediction.
arXiv Detail & Related papers (2024-02-06T19:27:48Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
We introduce Stormer, a state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone.
At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals.
On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days.
arXiv Detail & Related papers (2023-12-06T19:46:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Revisiting Calibration for Question Answering [16.54743762235555]
We argue that the traditional evaluation of calibration does not reflect usefulness of the model confidence.
We propose a new calibration metric, MacroCE, that better captures whether the model assigns low confidence to wrong predictions and high confidence to correct predictions.
arXiv Detail & Related papers (2022-05-25T05:49:56Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
We introduce a novel calibration method, Parametrized Temperature Scaling (PTS)
We demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power.
We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.
arXiv Detail & Related papers (2021-02-24T10:18:30Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.