Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events
- URL: http://arxiv.org/abs/2404.17652v1
- Date: Fri, 26 Apr 2024 18:18:25 GMT
- Title: Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events
- Authors: Olivier C. Pasche, Jonathan Wider, Zhongwei Zhang, Jakob Zscheischler, Sebastian Engelke,
- Abstract summary: We compare weather prediction models and ECMWF's high-resolution forecast (HRES) system in three case studies.
We find evidence that machine learning weather prediction models can achieve similar accuracy to HRES on record-shattering events.
However, extrapolating to extreme conditions may impact machine learning models more severely than HRES.
- Score: 0.1747623282473278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The forecast accuracy of deep-learning-based weather prediction models is improving rapidly, leading many to speak of a "second revolution in weather forecasting". With numerous methods being developed, and limited physical guarantees offered by deep-learning models, there is a critical need for comprehensive evaluation of these emerging techniques. While this need has been partly fulfilled by benchmark datasets, they provide little information on rare and impactful extreme events, or on compound impact metrics, for which model accuracy might degrade due to misrepresented dependencies between variables. To address these issues, we compare deep-learning weather prediction models (GraphCast, PanguWeather, FourCastNet) and ECMWF's high-resolution forecast (HRES) system in three case studies: the 2021 Pacific Northwest heatwave, the 2023 South Asian humid heatwave, and the North American winter storm in 2021. We find evidence that machine learning (ML) weather prediction models can locally achieve similar accuracy to HRES on record-shattering events such as the 2021 Pacific Northwest heatwave and even forecast the compound 2021 North American winter storm substantially better. However, extrapolating to extreme conditions may impact machine learning models more severely than HRES, as evidenced by the comparable or superior spatially- and temporally-aggregated forecast accuracy of HRES for the two heatwaves studied. The ML forecasts also lack variables required to assess the health risks of events such as the 2023 South Asian humid heatwave. Generally, case-study-driven, impact-centric evaluation can complement existing research, increase public trust, and aid in developing reliable ML weather prediction models.
Related papers
- Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
arXiv Detail & Related papers (2024-08-29T08:36:22Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Short-term precipitation prediction using deep learning [5.1589108738893215]
We show that a 3D convolutional neural network using a single frame of meteorology fields is capable of predicting the precipitation spatial distribution.
The network is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States.
arXiv Detail & Related papers (2021-10-05T06:37:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.