論文の概要: Understanding the Functional Roles of Modelling Components in Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2403.16674v1
- Date: Mon, 25 Mar 2024 12:13:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 14:58:36.574875
- Title: Understanding the Functional Roles of Modelling Components in Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークにおけるモデリングコンポーネントの機能的役割の理解
- Authors: Huifeng Yin, Hanle Zheng, Jiayi Mao, Siyuan Ding, Xing Liu, Mingkun Xu, Yifan Hu, Jing Pei, Lei Deng,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、生物学的忠実さで高い計算効率を達成することを約束している。
LIFに基づくSNNにおけるキーモデリングコンポーネント,リーク,リセット,再起動の機能的役割について検討する。
具体的には、メモリ保持とロバスト性のバランスにおいてリークが重要な役割を担い、リセット機構は未中断の時間的処理と計算効率に不可欠であり、リセットは、ロバストネス劣化を犠牲にして複雑なダイナミクスをモデル化する能力を強化する。
- 参考スコア(独自算出の注目度): 9.448298335007465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs), inspired by the neural circuits of the brain, are promising in achieving high computational efficiency with biological fidelity. Nevertheless, it is quite difficult to optimize SNNs because the functional roles of their modelling components remain unclear. By designing and evaluating several variants of the classic model, we systematically investigate the functional roles of key modelling components, leakage, reset, and recurrence, in leaky integrate-and-fire (LIF) based SNNs. Through extensive experiments, we demonstrate how these components influence the accuracy, generalization, and robustness of SNNs. Specifically, we find that the leakage plays a crucial role in balancing memory retention and robustness, the reset mechanism is essential for uninterrupted temporal processing and computational efficiency, and the recurrence enriches the capability to model complex dynamics at a cost of robustness degradation. With these interesting observations, we provide optimization suggestions for enhancing the performance of SNNs in different scenarios. This work deepens the understanding of how SNNs work, which offers valuable guidance for the development of more effective and robust neuromorphic models.
- Abstract(参考訳): 脳の神経回路にインスパイアされたスパイキングニューラルネットワーク(SNN)は、生物学的忠実さで高い計算効率を達成することを約束している。
しかしながら、モデリングコンポーネントの機能的役割が不明確であるため、SNNを最適化することは極めて困難である。
従来のモデルのいくつかの変種を設計・評価することにより,漏洩統合・火災(LIF)に基づくSNNにおけるキーモデリングコンポーネント,リーク,リセット,再発の機能的役割を体系的に検討する。
広範な実験を通じて,これらの成分がSNNの精度,一般化,堅牢性に与える影響を実証する。
具体的には、メモリ保持とロバスト性のバランスにおいてリークが重要な役割を担い、リセット機構は未中断の時間的処理と計算効率に不可欠であり、リセットは、ロバストネス劣化を犠牲にして複雑なダイナミクスをモデル化する能力を強化する。
これらの興味深い観測により、異なるシナリオにおけるSNNの性能向上のための最適化提案を行う。
この研究は、より効果的で堅牢なニューロモルフィックモデルの開発のための貴重なガイダンスを提供するSNNの動作方法の理解を深める。
関連論文リスト
- Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
スパイキングニューラルネットワーク(SNN)はスパーススパイクを利用して情報を表現し、イベント駆動方式で処理する。
シナプス重みと膜電位の両方に量子化を適用する軽量でハードウェアフレンドリな量子化SNNを提案する。
本稿では,情報エントロピー理論にインスパイアされた新しいウェイトスパイクデュアルレギュレーション(WS-DR)法を提案する。
論文 参考訳(メタデータ) (2024-06-19T16:23:26Z) - Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks [0.0]
本稿では,スパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を向上させるための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
特に、アストロサイトを拡張したSNNは、ほぼゼロのレイテンシと理論上無限のスループットを示し、計算効率が極めて高いことを示唆している。
論文 参考訳(メタデータ) (2023-09-15T08:02:29Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
SAM(Self-attention mechanism)は、人工知能の様々な分野で広く使われている。
常微分方程式(ODE)の高精度解における固有剛性現象(SP)は,高性能ニューラルネットワーク(NN)にも広く存在することを示す。
SAMは、本質的なSPを測定するためのモデルの表現能力を高めることができる剛性対応のステップサイズ適応器でもあることを示す。
論文 参考訳(メタデータ) (2023-08-19T08:17:41Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
スパイクニューラルネットワーク(SNN)は離散スパイクを通して情報を伝達し、空間時間情報を処理するのによく機能する。
適応型自己フィードバックと平衡興奮性および抑制性ニューロン(BackEISNN)を用いた深部スパイクニューラルネットワークを提案する。
MNIST、FashionMNIST、N-MNISTのデータセットに対して、我々のモデルは最先端の性能を達成した。
論文 参考訳(メタデータ) (2021-05-27T08:38:31Z) - Batch Normalization Increases Adversarial Vulnerability and Decreases
Adversarial Transferability: A Non-Robust Feature Perspective [91.5105021619887]
バッチ正規化(BN)は、現代のディープニューラルネットワーク(DNN)で広く使われている。
BNは、対向ロバスト性を犠牲にしてモデル精度を高めることが観察された。
BNが主にロバスト特徴(RF)と非ロバスト特徴(NRF)の学習を好んでいるかどうかは不明である。
論文 参考訳(メタデータ) (2020-10-07T10:24:33Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。