論文の概要: Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks
- arxiv url: http://arxiv.org/abs/2309.08232v1
- Date: Fri, 15 Sep 2023 08:02:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 15:35:15.161681
- Title: Astrocyte-Integrated Dynamic Function Exchange in Spiking Neural
Networks
- Title(参考訳): スパイクニューラルネットワークにおけるアストロサイト結合型動的機能交換
- Authors: Murat Isik, Kayode Inadagbo
- Abstract要約: 本稿では,スパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を向上させるための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
特に、アストロサイトを拡張したSNNは、ほぼゼロのレイテンシと理論上無限のスループットを示し、計算効率が極めて高いことを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an innovative methodology for improving the robustness
and computational efficiency of Spiking Neural Networks (SNNs), a critical
component in neuromorphic computing. The proposed approach integrates
astrocytes, a type of glial cell prevalent in the human brain, into SNNs,
creating astrocyte-augmented networks. To achieve this, we designed and
implemented an astrocyte model in two distinct platforms: CPU/GPU and FPGA. Our
FPGA implementation notably utilizes Dynamic Function Exchange (DFX)
technology, enabling real-time hardware reconfiguration and adaptive model
creation based on current operating conditions. The novel approach of
leveraging astrocytes significantly improves the fault tolerance of SNNs,
thereby enhancing their robustness. Notably, our astrocyte-augmented SNN
displays near-zero latency and theoretically infinite throughput, implying
exceptional computational efficiency. Through comprehensive comparative
analysis with prior works, it's established that our model surpasses others in
terms of neuron and synapse count while maintaining an efficient power
consumption profile. These results underscore the potential of our methodology
in shaping the future of neuromorphic computing, by providing robust and
energy-efficient systems.
- Abstract(参考訳): 本稿ではニューロモルフィックコンピューティングにおいて重要なコンポーネントであるスパイキングニューラルネットワーク(SNN)の堅牢性と計算効率を改善するための革新的な手法を提案する。
提案手法はヒト脳に広く分布するグリア細胞であるアストロサイトをSNNに統合し、アストロサイトを増強したネットワークを形成する。
そこで我々は,CPU/GPUとFPGAの2つのプラットフォームでアストロサイトモデルを設計,実装した。
我々のFPGA実装は、動的関数交換(DFX)技術を利用しており、現在の動作条件に基づいたリアルタイムハードウェア再構成と適応モデル作成を可能にしている。
アストロサイトを活用する新しいアプローチは、SNNのフォールトトレランスを大幅に改善し、その堅牢性を高める。
特にastrocyte-augmented snnは、ほぼゼロのレイテンシと理論的には無限のスループットを示しており、計算効率が極めて高いことを示している。
先行研究との包括的比較分析により, 効率的な消費電力プロファイルを維持しつつ, ニューロン数とシナプス数で他のモデルを上回ることが確認された。
これらの結果は、ロバストでエネルギー効率の良いシステムを提供することで、神経形コンピューティングの未来を形作るための方法論の可能性を強調する。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - NeuroLGP-SM: Scalable Surrogate-Assisted Neuroevolution for Deep Neural Networks [0.0]
進化的アルゴリズムは、人工深層ニューラルネットワーク(DNN)のアーキテクチャ構成とトレーニングにおいて重要な役割を果たす
本研究では, DNNから出力される表現型距離ベクトルと, Kriging partial Least Squares (KPLS) を用いて探索する。
提案手法はニューロLinear Genetic Programming surrogate model (NeuroLGP-SM) と名付けられ, 完全評価を必要とせず, DNNの適合性を効率的に正確に推定する。
論文 参考訳(メタデータ) (2024-04-12T19:15:38Z) - Neuroevolving Electronic Dynamical Networks [0.0]
ニューロ進化(Neuroevolution)は、自然選択によって人工ニューラルネットワークの性能を改良するために進化的アルゴリズムを適用する方法である。
連続時間リカレントニューラルネットワーク(CTRNN)の適合性評価は、時間と計算コストがかかる可能性がある。
フィールドプログラマブルゲートアレイ(FPGA)は、高性能で消費電力の少ないため、ますます人気が高まっている。
論文 参考訳(メタデータ) (2024-04-06T10:54:35Z) - Understanding the Functional Roles of Modelling Components in Spiking Neural Networks [9.448298335007465]
スパイキングニューラルネットワーク(SNN)は、生物学的忠実さで高い計算効率を達成することを約束している。
LIFに基づくSNNにおけるキーモデリングコンポーネント,リーク,リセット,再起動の機能的役割について検討する。
具体的には、メモリ保持とロバスト性のバランスにおいてリークが重要な役割を担い、リセット機構は未中断の時間的処理と計算効率に不可欠であり、リセットは、ロバストネス劣化を犠牲にして複雑なダイナミクスをモデル化する能力を強化する。
論文 参考訳(メタデータ) (2024-03-25T12:13:20Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
スパイキングニューラルネットワーク(SNN)は、超高速のニューロモルフィックデバイス上で走る能力のため、かなりの注目を集めている。
本研究では,SNN内で拡散モデルを構築するために,拡散暗黙モデル (FSDDIM) を完全にスパイクする新しい手法を提案する。
提案手法は,最先端の完全スパイク生成モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-04T09:07:09Z) - Free-Space Optical Spiking Neural Network [0.0]
自由空間光深絞り畳み込みニューラルネットワーク(OSCNN)について紹介する。
この手法は人間の眼の計算モデルからインスピレーションを得ている。
以上の結果から,電子的ONNと比較して,レイテンシと消費電力を最小に抑えた有望な性能を示す。
論文 参考訳(メタデータ) (2023-11-08T09:41:14Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。