論文の概要: Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2403.16818v1
- Date: Mon, 25 Mar 2024 14:46:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:05:08.899782
- Title: Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization
- Title(参考訳): グラフベイズ最適化を用いた単一スナップショット観測からの複数音源位置推定
- Authors: Zonghan Zhang, Zijian Zhang, Zhiqian Chen,
- Abstract要約: 単一スナップショット観測によるマルチソースのローカライゼーションは、その頻度が原因で特に重要となる。
現在の方法は典型的には欲求選択を利用しており、通常は1つの拡散モデルと結合する。
そこで本研究では,BOSouLというシミュレーション手法を用いて,サンプル効率を近似する手法を提案する。
- 参考スコア(独自算出の注目度): 10.011338977476804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the significance of its various applications, source localization has garnered considerable attention as one of the most important means to confront diffusion hazards. Multi-source localization from a single-snapshot observation is especially relevant due to its prevalence. However, the inherent complexities of this problem, such as limited information, interactions among sources, and dependence on diffusion models, pose challenges to resolution. Current methods typically utilize heuristics and greedy selection, and they are usually bonded with one diffusion model. Consequently, their effectiveness is constrained. To address these limitations, we propose a simulation-based method termed BOSouL. Bayesian optimization (BO) is adopted to approximate the results for its sample efficiency. A surrogate function models uncertainty from the limited information. It takes sets of nodes as the input instead of individual nodes. BOSouL can incorporate any diffusion model in the data acquisition process through simulations. Empirical studies demonstrate that its performance is robust across graph structures and diffusion models. The code is available at https://github.com/XGraph-Team/BOSouL.
- Abstract(参考訳): 様々な応用の重要性から、拡散の危険性に直面する最も重要な手段の1つとして、ソースのローカライゼーションが注目されている。
シングルスナップショット観測によるマルチソースのローカライゼーションは、その頻度が原因で特に重要となる。
しかし、限られた情報、ソース間の相互作用、拡散モデルへの依存など、この問題の本質的な複雑さは、解決に挑戦する。
現在の方法は通常、ヒューリスティックスと欲求選択を利用し、通常は1つの拡散モデルと結合する。
その結果、その効果は制限される。
これらの制約に対処するため,BOSouLと呼ばれるシミュレーションに基づく手法を提案する。
ベイズ最適化(BO)はサンプル効率を近似するために用いられる。
代理関数は、限られた情報から不確実性をモデル化する。
個々のノードの代わりに入力としてノードの集合を取る。
BOSouLは、シミュレーションを通じてデータ取得プロセスに任意の拡散モデルを組み込むことができる。
実験的な研究は、グラフ構造や拡散モデルにまたがってその性能が堅牢であることを示した。
コードはhttps://github.com/XGraph-Team/BOSouL.comで公開されている。
関連論文リスト
- Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
離散拡散における「ミクチャー」モデルは、拡張性を維持しながら次元相関を扱える。
CIFAR-10データセットで事前学習した連続時間離散拡散モデルを蒸留することにより,提案手法が実際に動作することを実証的に実証した。
論文 参考訳(メタデータ) (2024-10-11T10:53:03Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
拡散モデルは、時間ステップの零点付近で無限のリプシッツをしばしば表すことを示す。
これは、積分演算に依存する拡散過程の安定性と精度に脅威をもたらす。
我々はE-TSDMと呼ばれる新しい手法を提案し、これは0に近い拡散モデルのリプシッツを除去する。
論文 参考訳(メタデータ) (2023-06-20T03:05:28Z) - Two-stage Denoising Diffusion Model for Source Localization in Graph
Inverse Problems [19.57064597050846]
ソースローカライゼーションは、グラフ情報拡散の逆問題である。
本稿では,2段階最適化フレームワークであるソースローカライゼーション・デノナイズ拡散モデル(SL-Diff)を提案する。
SL-Diffは広範囲な実験で適切なサンプリング時間内に優れた予測結果が得られる。
論文 参考訳(メタデータ) (2023-04-18T09:11:09Z) - Source Localization of Graph Diffusion via Variational Autoencoders for
Graph Inverse Problems [8.984898754363265]
グラフ拡散の逆問題としてのソースローカライゼーションは極めて困難である。
本稿では,異なる候補源の不確実性を考慮した確率的手法に焦点をあてる。
7つの実世界のデータセット上で実験を行い、拡散源の再構築におけるSL-VAEの優位性を実証した。
論文 参考訳(メタデータ) (2022-06-24T14:56:45Z) - An Invertible Graph Diffusion Neural Network for Source Localization [8.811725212252544]
本稿では,グラフ上のソースローカライゼーションのための非可逆グラフ拡散モデルの汎用的枠組みを確立することを目的とする。
具体的には,既存のグラフ拡散モデルを理論的保証で非可逆化するグラフ残差シナリオを提案する。
また,推定源の誤差を相殺する新しい誤り補償機構も開発している。
論文 参考訳(メタデータ) (2022-06-18T14:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。