論文の概要: Distillation of Discrete Diffusion through Dimensional Correlations
- arxiv url: http://arxiv.org/abs/2410.08709v1
- Date: Fri, 11 Oct 2024 10:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:25:15.592652
- Title: Distillation of Discrete Diffusion through Dimensional Correlations
- Title(参考訳): 次元相関による離散拡散の蒸留
- Authors: Satoshi Hayakawa, Yuhta Takida, Masaaki Imaizumi, Hiromi Wakaki, Yuki Mitsufuji,
- Abstract要約: 離散拡散における「ミクチャー」モデルは、拡張性を維持しながら次元相関を扱える。
CIFAR-10データセットで事前学習した連続時間離散拡散モデルを蒸留することにより,提案手法が実際に動作することを実証的に実証した。
- 参考スコア(独自算出の注目度): 21.078500510691747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have demonstrated exceptional performances in various fields of generative modeling. While they often outperform competitors including VAEs and GANs in sample quality and diversity, they suffer from slow sampling speed due to their iterative nature. Recently, distillation techniques and consistency models are mitigating this issue in continuous domains, but discrete diffusion models have some specific challenges towards faster generation. Most notably, in the current literature, correlations between different dimensions (pixels, locations) are ignored, both by its modeling and loss functions, due to computational limitations. In this paper, we propose "mixture" models in discrete diffusion that are capable of treating dimensional correlations while remaining scalable, and we provide a set of loss functions for distilling the iterations of existing models. Two primary theoretical insights underpin our approach: first, that dimensionally independent models can well approximate the data distribution if they are allowed to conduct many sampling steps, and second, that our loss functions enables mixture models to distill such many-step conventional models into just a few steps by learning the dimensional correlations. We empirically demonstrate that our proposed method for discrete diffusions work in practice, by distilling a continuous-time discrete diffusion model pretrained on the CIFAR-10 dataset.
- Abstract(参考訳): 拡散モデルは、生成モデリングの様々な分野において例外的な性能を示した。
VAEやGANといった競合製品よりも、サンプルの品質と多様性が優れているが、反復的な性質のためサンプリング速度が遅い。
近年、蒸留技術と整合性モデルは連続領域においてこの問題を緩和しているが、離散拡散モデルはより高速な生成にいくつかの特別な課題を持っている。
特に、現在の文献では、異なる次元(ピクセル、位置)間の相関は、そのモデリングと損失関数によって無視される。
本稿では,拡張性を維持しながら次元相関を扱える離散拡散の混合モデルを提案し,既存のモデルの繰り返しを蒸留する損失関数のセットを提供する。
第一に、次元独立モデルが多くのサンプリングステップを実行することを許された場合、データ分布をうまく近似できるし、第二に、損失関数は、そのような多くのステップの従来のモデルを、次元相関を学習することで、わずか数ステップで蒸留することができる。
CIFAR-10データセットで事前学習した連続時間離散拡散モデルを蒸留することにより,提案手法が実際に動作することを実証的に実証した。
関連論文リスト
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
離散データに対する既存の連続拡散モデルは、離散的アプローチと比較して性能が限られている。
本稿では,下層の分類分布の幾何学を組み込んだ言語モデリングのための連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-17T08:54:29Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization [10.011338977476804]
単一スナップショット観測によるマルチソースのローカライゼーションは、その頻度が原因で特に重要となる。
現在の方法は典型的には欲求選択を利用しており、通常は1つの拡散モデルと結合する。
そこで本研究では,BOSouLというシミュレーション手法を用いて,サンプル効率を近似する手法を提案する。
論文 参考訳(メタデータ) (2024-03-25T14:46:24Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
拡散に基づく生成モデルを無限次元で定式化し、関数の生成モデルに適用する。
我々の定式化は無限次元の設定においてよく成り立っていることを示し、サンプルから目標測度への次元非依存距離境界を提供する。
また,無限次元拡散モデルの設計ガイドラインも作成する。
論文 参考訳(メタデータ) (2023-02-20T18:00:38Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
関係領域で独立に訓練された2つの拡散モデルから共通潜時空間が現れることを示す。
テキスト・画像拡散モデルにCycleDiffusionを適用することで、大規模なテキスト・画像拡散モデルがゼロショット画像・画像拡散エディタとして使用できることを示す。
論文 参考訳(メタデータ) (2022-10-11T15:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。