Multiple Object Tracking as ID Prediction
- URL: http://arxiv.org/abs/2403.16848v1
- Date: Mon, 25 Mar 2024 15:09:54 GMT
- Title: Multiple Object Tracking as ID Prediction
- Authors: Ruopeng Gao, Yijun Zhang, Limin Wang,
- Abstract summary: In Multiple Object Tracking (MOT), tracking-by-detection methods have stood the test for a long time.
They leverage single-frame detectors and treat object association as a post-processing step through hand-crafted algorithms and surrogate tasks.
However, the nature of techniques prevents end-to-end exploitation of training data, leading to increasingly cumbersome and challenging manual modification.
- Score: 14.890192237433771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Multiple Object Tracking (MOT), tracking-by-detection methods have stood the test for a long time, which split the process into two parts according to the definition: object detection and association. They leverage robust single-frame detectors and treat object association as a post-processing step through hand-crafted heuristic algorithms and surrogate tasks. However, the nature of heuristic techniques prevents end-to-end exploitation of training data, leading to increasingly cumbersome and challenging manual modification while facing complicated or novel scenarios. In this paper, we regard this object association task as an End-to-End in-context ID prediction problem and propose a streamlined baseline called MOTIP. Specifically, we form the target embeddings into historical trajectory information while considering the corresponding IDs as in-context prompts, then directly predict the ID labels for the objects in the current frame. Thanks to this end-to-end process, MOTIP can learn tracking capabilities straight from training data, freeing itself from burdensome hand-crafted algorithms. Without bells and whistles, our method achieves impressive state-of-the-art performance in complex scenarios like DanceTrack and SportsMOT, and it performs competitively with other transformer-based methods on MOT17. We believe that MOTIP demonstrates remarkable potential and can serve as a starting point for future research. The code is available at https://github.com/MCG-NJU/MOTIP.
Related papers
- VOVTrack: Exploring the Potentiality in Videos for Open-Vocabulary Object Tracking [61.56592503861093]
This issue amalgamates the complexities of open-vocabulary object detection (OVD) and multi-object tracking (MOT)
Existing approaches to OVMOT often merge OVD and MOT methodologies as separate modules, predominantly focusing on the problem through an image-centric lens.
We propose VOVTrack, a novel method that integrates object states relevant to MOT and video-centric training to address this challenge from a video object tracking standpoint.
arXiv Detail & Related papers (2024-10-11T05:01:49Z) - Lost and Found: Overcoming Detector Failures in Online Multi-Object Tracking [15.533652456081374]
Multi-object tracking (MOT) endeavors to precisely estimate identities and positions of multiple objects over time.
Modern detectors may occasionally miss some objects in certain frames, causing trackers to cease tracking prematurely.
We propose BUSCA, meaning to search', a versatile framework compatible with any online TbD system.
arXiv Detail & Related papers (2024-07-14T10:45:12Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
We propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images.
Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets.
By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack.
arXiv Detail & Related papers (2023-06-08T14:36:10Z) - Bridging the Gap Between End-to-end and Non-End-to-end Multi-Object
Tracking [27.74953961900086]
Existing end-to-end Multi-Object Tracking (e2e-MOT) methods have not surpassed non-end-to-end tracking-by-detection methods.
We present Co-MOT, a simple and effective method to facilitate e2e-MOT by a novel coopetition label assignment with a shadow concept.
arXiv Detail & Related papers (2023-05-22T05:18:34Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Transformer-based assignment decision network for multiple object
tracking [0.0]
We introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of explicit optimization during inference.
Our proposed approach outperforms the state-of-the-art in most evaluation metrics despite its simple nature as a tracker.
arXiv Detail & Related papers (2022-08-06T19:47:32Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.