論文の概要: Towards Explainability in Legal Outcome Prediction Models
- arxiv url: http://arxiv.org/abs/2403.16852v1
- Date: Mon, 25 Mar 2024 15:15:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:54:11.360028
- Title: Towards Explainability in Legal Outcome Prediction Models
- Title(参考訳): 法的なアウトカム予測モデルにおける説明可能性に向けて
- Authors: Josef Valvoda, Ryan Cotterell,
- Abstract要約: 我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の裁判官と我々のモデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
- 参考スコア(独自算出の注目度): 64.00172507827499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current legal outcome prediction models - a staple of legal NLP - do not explain their reasoning. However, to employ these models in the real world, human legal actors need to be able to understand their decisions. In the case of common law, legal practitioners reason towards the outcome of a case by referring to past case law, known as precedent. We contend that precedent is, therefore, a natural way of facilitating explainability for legal NLP models. In this paper, we contribute a novel method for identifying the precedent employed by legal outcome prediction models. Furthermore, by developing a taxonomy of legal precedent, we are able to compare human judges and our models with respect to the different types of precedent they rely on. We find that while the models learn to predict outcomes reasonably well, their use of precedent is unlike that of human judges.
- Abstract(参考訳): 現在の法的結果予測モデル - 法的なNLPの基盤 - は、彼らの推論を説明していない。
しかし、これらのモデルを現実世界で活用するには、人間の法的なアクターが彼らの決定を理解する必要がある。
慣習法の場合、法律実務者は、前例として知られる過去の事件法を参照して事件の結末を判断する。
そこで我々は,従来のNLPモデルに対する説明可能性の自然な方法として,先例を論じる。
本稿では,法的な結果予測モデルが採用した先例を特定するための新しい手法を提案する。
さらに, 法的な先例の分類法を開発することにより, 人間の判断とモデルを比較し, それらが依存する先例の種類を比較できる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
関連論文リスト
- PILOT: Legal Case Outcome Prediction with Case Law [43.680862577060765]
判例法を用いて判例結果の予測を行う際の2つのユニークな課題を同定する。
第一に、意思決定において裁判官の基本的な証拠となる関連する前例を特定することが重要である。
第二に、初期の事例は異なる法的文脈に従う可能性があるため、時間とともに法原則の進化を考慮する必要がある。
論文 参考訳(メタデータ) (2024-01-28T21:18:05Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
我々は、信頼できる電荷予測モデルが法的理論を考慮に入れるべきであると主張している。
本稿では,この課題に従わなければならない信頼に値するモデルの3つの原則を提案する。
以上の結果から,既存の電荷予測モデルはベンチマークデータセットの選択的原理に合致するが,そのほとんどが十分な感度が得られず,無害の予測を満たさないことが示唆された。
論文 参考訳(メタデータ) (2022-10-31T07:32:12Z) - JUSTICE: A Benchmark Dataset for Supreme Court's Judgment Prediction [0.0]
我々は、自然言語処理(NLP)研究やその他のデータ駆動アプリケーションで容易に利用できるように、SCOTUS裁判所の高品質なデータセットを作成することを目指している。
先進的なNLPアルゴリズムを用いて以前の訴訟を分析することにより、訓練されたモデルは裁判所の判断を予測し、分類することができる。
論文 参考訳(メタデータ) (2021-12-06T23:19:08Z) - Predicting Indian Supreme Court Judgments, Decisions, Or Appeals [0.403831199243454]
新たに開発したML対応法定予測モデルとその運用プロトタイプであるeLegPredictを紹介した。
eLegPredictは3072件の最高裁判所事件で訓練されテストされ、精度は76%に達した(F1スコア)。
eLegPredictはエンドユーザを支援するメカニズムを備えており、新しいケース記述を持つドキュメントが指定されたディレクトリにドロップされると、システムはすぐにコンテンツを読み込んで予測を生成する。
論文 参考訳(メタデータ) (2021-09-28T18:28:43Z) - AutoLAW: Augmented Legal Reasoning through Legal Precedent Prediction [0.0]
本稿は,NLPが法的コミュニティの未解決ニーズに対処し,正義へのアクセスを高めるためにどのように使用できるかを示す。
本稿では,法律論争の文脈を考慮し,先例裁判所の決定から関連事項を予測することを目的とした法定先行予測(LPP)について紹介する。
論文 参考訳(メタデータ) (2021-06-30T13:01:33Z) - What About the Precedent: An Information-Theoretic Analysis of Common
Law [64.49276556192073]
一般的な法律では、新しい事件の結果は、既存の法令ではなく、前例によって決定されることが多い。
私たちは、2つの長年にわたる法学的な見解を比較することで、この問題に最初に取り組みました。
前例の主張は事件の結果と0.38ナットの情報を共有しているのに対し、前例の事実は0.18ナットの情報しか共有していない。
論文 参考訳(メタデータ) (2021-04-25T11:20:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。