論文の概要: Discrete Latent Graph Generative Modeling with Diffusion Bridges
- arxiv url: http://arxiv.org/abs/2403.16883v1
- Date: Mon, 25 Mar 2024 15:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:44:21.760274
- Title: Discrete Latent Graph Generative Modeling with Diffusion Bridges
- Title(参考訳): 拡散ブリッジを用いた離散遅延グラフ生成モデル
- Authors: Van Khoa Nguyen, Yoann Boget, Frantzeska Lavda, Alexandros Kalousis,
- Abstract要約: GLADを潜在空間グラフ生成モデルとして提示する。
従来のラテント空間グラフ生成モデルとは異なり、GLADは離散ラテント空間で動作する。
GLADは競争性能を持つ最初の潜在空間グラフ生成モデルであることを示す。
- 参考スコア(独自算出の注目度): 44.86731507203063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning graph generative models over latent spaces has received less attention compared to models that operate on the original data space and has so far demonstrated lacklustre performance. We present GLAD a latent space graph generative model. Unlike most previous latent space graph generative models, GLAD operates on a discrete latent space that preserves to a significant extent the discrete nature of the graph structures making no unnatural assumptions such as latent space continuity. We learn the prior of our discrete latent space by adapting diffusion bridges to its structure. By operating over an appropriately constructed latent space we avoid relying on decompositions that are often used in models that operate in the original data space. We present experiments on a series of graph benchmark datasets which clearly show the superiority of the discrete latent space and obtain state of the art graph generative performance, making GLAD the first latent space graph generative model with competitive performance. Our source code is published at: \url{https://github.com/v18nguye/GLAD}.
- Abstract(参考訳): グラフ生成モデルを遅延空間上で学習することは、元のデータ空間で動作するモデルに比べてあまり注目されず、これまでは性能の欠如を実証してきた。
GLADを潜在空間グラフ生成モデルとして提示する。
従来のラテント空間グラフ生成モデルとは異なり、GLADは離散ラテント空間上で動作し、ラテント空間連続性のような不自然な仮定をしないグラフ構造の離散的性質をかなり保存する。
我々は拡散ブリッジをその構造に適応させることで離散潜在空間の先行を学習する。
適切に構築された潜在空間を操作することで、元のデータ空間で動作するモデルでよく使用される分解に依存することを避けることができる。
本稿では,離散潜在空間の優越性を明らかに示し,最先端グラフ生成性能を得る一連のグラフベンチマークデータセットの実験を行い,GLADを競合性能を持つ最初の潜在空間グラフ生成モデルとした。
ソースコードは以下に公開しています。 \url{https://github.com/v18nguye/GLAD}。
関連論文リスト
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
グラフ生成モデルは,1行にグラフを生成するワンショットモデルと,ノードとエッジの連続的な付加によるグラフを生成するシーケンシャルモデルという,2つの顕著なファミリーに分類される。
本稿では,逐次度を規定するグラフ生成モデルであるInsert-Fill-Halt(IFH)を提案する。
論文 参考訳(メタデータ) (2024-08-23T16:24:40Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD)は、グラフデータの多様な性質を扱うために特別に設計された生成モデルである。
本稿では, 臨界グラフトポロジを安定化させることにより, 生成グラフの現実性を高める変調手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:42:57Z) - Cometh: A continuous-time discrete-state graph diffusion model [8.444907767842228]
グラフデータの特異性に合わせて連続時間離散状態グラフ拡散モデルであるCometを提案する。
VUNサンプルの面では、Cometは平面グラフデータセットで99.5%のほぼ完全なパフォーマンスを取得し、大きなGuacaMolデータセットでDiGressを12.6%上回っている。
論文 参考訳(メタデータ) (2024-06-10T16:39:39Z) - Hyperbolic Geometric Latent Diffusion Model for Graph Generation [27.567428462212455]
拡散モデルはコンピュータビジョンに多大な貢献をしており、最近、グラフ生成への応用に関するコミュニティの関心が高まっている。
本稿では,新しい幾何学的遅延拡散フレームワークHypDiffを提案する。
具体的には、まず、双曲幾何学に基づく解釈可能性測度を持つ幾何学的潜在空間を確立し、グラフの異方性潜在拡散過程を定義する。
そこで我々は, 放射状および角状両方の幾何学的性質に制約された幾何学的潜在拡散過程を提案し, 生成グラフにおける原位相特性の保存を確実にする。
論文 参考訳(メタデータ) (2024-05-06T06:28:44Z) - AMES: A Differentiable Embedding Space Selection Framework for Latent
Graph Inference [6.115315198322837]
Intentional Multi-Embedding Selection (AMES) フレームワークを導入する。
我々のフレームワークは、遅延グラフ推論の従来の手法と比較して、常に同等または優れた結果が得られる。
論文 参考訳(メタデータ) (2023-11-20T16:24:23Z) - Projections of Model Spaces for Latent Graph Inference [18.219577154655006]
グラフニューラルネットワークは、グラフの接続構造を帰納バイアスとして利用する。
潜在グラフ推論は、適切なグラフ構造を学習して、モデルの下流のパフォーマンスを拡散し改善することに焦点を当てる。
論文 参考訳(メタデータ) (2023-03-21T11:20:22Z) - Latent Graph Inference using Product Manifolds [0.0]
遅延グラフ学習のための離散微分可能グラフモジュール(dDGM)を一般化する。
我々の新しいアプローチは、幅広いデータセットでテストされ、元のdDGMモデルよりも優れています。
論文 参考訳(メタデータ) (2022-11-26T22:13:06Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。