論文の概要: Improving Graph Generation by Restricting Graph Bandwidth
- arxiv url: http://arxiv.org/abs/2301.10857v2
- Date: Tue, 30 May 2023 22:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 03:30:17.790323
- Title: Improving Graph Generation by Restricting Graph Bandwidth
- Title(参考訳): グラフ帯域制限によるグラフ生成の改善
- Authors: Nathaniel Diamant, Alex M. Tseng, Kangway V. Chuang, Tommaso
Biancalani, Gabriele Scalia
- Abstract要約: ディープグラフ生成モデリングは、実世界のグラフを特徴付ける複雑なマルチスケール構造の分布を学習できることが証明されている。
既存の方法の主な制限の1つは、その大きな出力空間である。
本稿では,既存のグラフ生成モデルの出力空間を大幅に削減する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.7874708385247353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep graph generative modeling has proven capable of learning the
distribution of complex, multi-scale structures characterizing real-world
graphs. However, one of the main limitations of existing methods is their large
output space, which limits generation scalability and hinders accurate modeling
of the underlying distribution. To overcome these limitations, we propose a
novel approach that significantly reduces the output space of existing graph
generative models. Specifically, starting from the observation that many
real-world graphs have low graph bandwidth, we restrict graph bandwidth during
training and generation. Our strategy improves both generation scalability and
quality without increasing architectural complexity or reducing expressiveness.
Our approach is compatible with existing graph generative methods, and we
describe its application to both autoregressive and one-shot models. We
extensively validate our strategy on synthetic and real datasets, including
molecular graphs. Our experiments show that, in addition to improving
generation efficiency, our approach consistently improves generation quality
and reconstruction accuracy. The implementation is made available.
- Abstract(参考訳): ディープグラフ生成モデリングは、実世界のグラフを特徴付ける複雑なマルチスケール構造の分布を学習できることが証明されている。
しかし、既存の手法の主な限界の1つは、生成のスケーラビリティを制限し、基礎となる分布の正確なモデリングを妨げる大きな出力空間である。
これらの制約を克服するために,既存のグラフ生成モデルの出力空間を大幅に削減する新しい手法を提案する。
具体的には、多くの実世界のグラフが低いグラフ帯域を持つという観察から始め、トレーニングと生成の間にグラフ帯域を制限する。
私たちの戦略は、アーキテクチャの複雑さを増大させることなく、スケーラビリティと品質の両方を改善します。
提案手法は既存のグラフ生成手法と互換性があり,自動回帰モデルとワンショットモデルの両方への応用について述べる。
分子グラフを含む合成および実データに対する我々の戦略を幅広く検証する。
提案手法は, 生成効率の向上に加えて, 生成品質と復元精度を常に向上することを示す。
実装は利用可能である。
関連論文リスト
- GLAD: Improving Latent Graph Generative Modeling with Simple Quantization [44.86731507203063]
本稿では,単純かつ効果的な離散潜在グラフ拡散生成モデルを提案する。
我々のモデル、すなわちGLADは、既存の潜伏アプローチの欠点を克服するだけでなく、グラフ空間に適用される拡散法に固有の問題を緩和する。
分子ベンチマークデータセット上で生成モデルを検証し、最先端のベースラインと比較して競合性能を示す。
論文 参考訳(メタデータ) (2024-03-25T15:53:32Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
本研究では,多種多様なグラフデータに存在する複雑なトポロジ的パターンを理解するための一般グラフ基盤モデルを構築した。
本稿では,グラフモデルに統一的なグラフトークン化手法を提案する。
また,グローバルなトポロジ的コンテキスト内のノード依存性を効果的にキャプチャするスケーラブルなグラフ変換器を開発した。
論文 参考訳(メタデータ) (2024-03-02T08:05:03Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-02T02:28:20Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
グラフに関する継続的な学習は、グラフデータがストリーミング形式で到着するグラフニューラルネットワーク(GNN)のトレーニングに対処する。
Experience Replayのような従来の継続的学習戦略は、ストリーミンググラフに適応することができる。
本稿では, TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning frameworkを提案する。
論文 参考訳(メタデータ) (2024-01-05T22:22:13Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [8.008021732866055]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - HiGen: Hierarchical Graph Generative Networks [2.3931689873603603]
ほとんどの実世界のグラフは階層構造を示しており、しばしば既存のグラフ生成法で見過ごされる。
本稿では,グラフの階層的な性質を捉え,グラフのサブ構造を粗い方法で連続的に生成するグラフ生成ネットワークを提案する。
このモジュラーアプローチは、大規模で複雑なグラフに対してスケーラブルなグラフ生成を可能にする。
論文 参考訳(メタデータ) (2023-05-30T18:04:12Z) - FairGen: Towards Fair Graph Generation [76.34239875010381]
フェアネスを考慮したグラフ生成モデルFairGenを提案する。
我々のモデルはラベルインフォームドグラフ生成モジュールと公正表現学習モジュールを共同で訓練する。
Webベースのグラフを含む7つの実世界のデータセットの実験結果は、FairGenが最先端のグラフ生成モデルと同等のパフォーマンスを得ることを示した。
論文 参考訳(メタデータ) (2023-03-30T23:30:42Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
本稿では,プライバシ制御により実世界のグラフの分布を学習し,再現する新しいグラフ生成モデルを提案する。
我々のモデルは、GNNモデルのベンチマークに効果的に使用できる大規模な実世界のグラフの、プライバシ制御された合成代用をうまく生成することができる。
論文 参考訳(メタデータ) (2022-07-10T06:42:02Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。