論文の概要: Invertible Diffusion Models for Compressed Sensing
- arxiv url: http://arxiv.org/abs/2403.17006v1
- Date: Mon, 25 Mar 2024 17:59:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 20:05:20.527078
- Title: Invertible Diffusion Models for Compressed Sensing
- Title(参考訳): 圧縮センシングのための可逆拡散モデル
- Authors: Bin Chen, Zhenyu Zhang, Weiqi Li, Chen Zhao, Jiwen Yu, Shijie Zhao, Jie Chen, Jian Zhang,
- Abstract要約: Invertible Diffusion Models (IDM) は、新しい効率的でエンドツーエンドの拡散に基づくCS法である。
IDMはCS測定から直接元の画像を復元するためにエンドツーエンドに微調整する。
IDMは最大10.09dBのPSNRゲインと14.54倍の高速化を実現している。
- 参考スコア(独自算出の注目度): 22.293412255419614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep neural networks (NN) significantly advance image compressed sensing (CS) by improving reconstruction quality, the necessity of training current CS NNs from scratch constrains their effectiveness and hampers rapid deployment. Although recent methods utilize pre-trained diffusion models for image reconstruction, they struggle with slow inference and restricted adaptability to CS. To tackle these challenges, this paper proposes Invertible Diffusion Models (IDM), a novel efficient, end-to-end diffusion-based CS method. IDM repurposes a large-scale diffusion sampling process as a reconstruction model, and finetunes it end-to-end to recover original images directly from CS measurements, moving beyond the traditional paradigm of one-step noise estimation learning. To enable such memory-intensive end-to-end finetuning, we propose a novel two-level invertible design to transform both (1) the multi-step sampling process and (2) the noise estimation U-Net in each step into invertible networks. As a result, most intermediate features are cleared during training to reduce up to 93.8% GPU memory. In addition, we develop a set of lightweight modules to inject measurements into noise estimator to further facilitate reconstruction. Experiments demonstrate that IDM outperforms existing state-of-the-art CS networks by up to 2.64dB in PSNR. Compared to the recent diffusion model-based approach DDNM, our IDM achieves up to 10.09dB PSNR gain and 14.54 times faster inference.
- Abstract(参考訳): ディープニューラルネットワーク(NN)は、再構成品質の向上により画像圧縮センシング(CS)を著しく向上させる一方で、現在のCS NNをスクラッチからトレーニングする必要性は、その効果を制限し、迅速な展開を妨げている。
近年,画像再構成に事前学習拡散モデルを用いた手法が提案されているが,遅延推論とCS適応性の制限に苦慮している。
これらの課題に対処するため,本研究では,新しい効率・エンドツーエンド拡散に基づくCS法であるInvertible Diffusion Models (IDM)を提案する。
IDMは、大規模な拡散サンプリングプロセスを再構成モデルとして再利用し、CS測定から直接元の画像を復元し、ワンステップノイズ推定学習の伝統的なパラダイムを超えて微調整する。
このようなメモリ集約型エンド・ツー・エンドファインタニングを実現するために,(1)マルチステップサンプリングプロセスと(2)各ステップにおけるノイズ推定U-Netの両方を可逆ネットワークに変換する新しい2レベル可逆設計を提案する。
その結果、ほとんどの中間機能はトレーニング中にクリアされ、最大93.8%のGPUメモリが削減される。
さらに, 騒音推定器に測定値を注入し, 再構成を容易にする軽量モジュールの開発を行った。
実験により、IMMはPSNRにおいて既存の最先端CSネットワークよりも2.64dB高い性能を示した。
最近の拡散モデルに基づくアプローチDDNMと比較して、IMMは最大10.09dBのPSNRゲインと14.54倍の高速化を実現している。
関連論文リスト
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
超圧縮アルゴリズムであるバイナリ化は、高度な拡散モデル(DM)を効果的に加速する可能性を提供する
既存の二項化法では性能が著しく低下する。
画像SRのための新しいバイナライズ拡散モデルBI-DiffSRを提案する。
論文 参考訳(メタデータ) (2024-06-09T10:30:25Z) - A-SDM: Accelerating Stable Diffusion through Model Assembly and Feature Inheritance Strategies [51.7643024367548]
安定拡散モデルは、テキスト・ツー・イメージ(T2I)と画像・ツー・イメージ(I2I)生成のための一般的かつ効果的なモデルである。
本研究では、SDMにおける冗長計算の削減と、チューニング不要とチューニング不要の両方の手法によるモデルの最適化に焦点をあてる。
論文 参考訳(メタデータ) (2024-05-31T21:47:05Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Fixed Point Diffusion Models [13.035518953879539]
FPDM(Fixed Point Diffusion Model)は、FPDM(Fixed Point Diffusion Model)の概念を拡散に基づく生成モデルに組み込んだ画像生成手法である。
提案手法では,拡散モデルのデノナイズネットワークに暗黙の固定点解法層を埋め込み,拡散過程を密接な関係のある固定点問題列に変換する。
我々は、ImageNet、FFHQ、CelebA-HQ、LSUN-Churchの最先端モデルを用いて実験を行い、性能と効率を大幅に改善した。
論文 参考訳(メタデータ) (2024-01-16T18:55:54Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
圧縮センシング(CS)は、従来のサンプリング法よりも少ない測定値を用いてスパース信号の回復を可能にする技術である。
我々はCSを用いた自然画像再構成のための解釈可能かつ簡潔なニューラルネットワークモデルを構築した。
MsDC-DEQ-Netと呼ばれるこのモデルは、最先端のネットワークベースの手法と比較して、競争力のある性能を示す。
論文 参考訳(メタデータ) (2024-01-05T16:25:58Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
本研究ではまず,ネットワークの計算冗長性について検討する。
次に、モデルの冗長性ブロックをプルークし、ネットワーク性能を維持する。
第3に,計算集約型注意部を高速化するグローバル地域対話型注意(GRI)を提案する。
論文 参考訳(メタデータ) (2023-12-24T15:37:47Z) - Analyzing and Improving the Training Dynamics of Diffusion Models [36.37845647984578]
一般的なADM拡散モデルアーキテクチャにおいて、不均一かつ非効率なトレーニングの原因をいくつか特定し、修正する。
この哲学の体系的な応用は、観測されたドリフトと不均衡を排除し、同じ計算複雑性でネットワークをかなり良くする。
論文 参考訳(メタデータ) (2023-12-05T11:55:47Z) - Learning A Coarse-to-Fine Diffusion Transformer for Image Restoration [39.071637725773314]
画像復元のための粗大な拡散変換器(C2F-DFT)を提案する。
C2F-DFTは拡散自己注意(DFSA)と拡散フィードフォワードネットワーク(DFN)を含んでいる
粗い訓練段階において,我々のC2F-DFTはノイズを推定し,サンプリングアルゴリズムにより最終クリーン画像を生成する。
論文 参考訳(メタデータ) (2023-08-17T01:59:59Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
拡散に基づく画像超解像法(SR)は主に低推論速度によって制限される。
本稿では,SRの拡散段数を大幅に削減する新しい,効率的な拡散モデルを提案する。
本手法は,残差をシフトすることで高分解能画像と低分解能画像の間を移動させるマルコフ連鎖を構成する。
論文 参考訳(メタデータ) (2023-07-23T15:10:02Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。