A Comparative Analysis of Visual Odometry in Virtual and Real-World Railways Environments
- URL: http://arxiv.org/abs/2403.17084v1
- Date: Mon, 25 Mar 2024 18:18:12 GMT
- Title: A Comparative Analysis of Visual Odometry in Virtual and Real-World Railways Environments
- Authors: Gianluca D'Amico, Mauro Marinoni, Giorgio Buttazzo,
- Abstract summary: This paper presents a comparative analysis of the performance of a SLAM algorithm applied both in a virtual synthetic environment and a real-world scenario.
The results highlight the feasibility and potentiality of graphic simulation to advance perception tasks in the railway domain.
- Score: 3.2750823836771685
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Perception tasks play a crucial role in the development of automated operations and systems across multiple application fields. In the railway transportation domain, these tasks can improve the safety, reliability, and efficiency of various perations, including train localization, signal recognition, and track discrimination. However, collecting considerable and precisely labeled datasets for testing such novel algorithms poses extreme challenges in the railway environment due to the severe restrictions in accessing the infrastructures and the practical difficulties associated with properly equipping trains with the required sensors, such as cameras and LiDARs. The remarkable innovations of graphic engine tools offer new solutions to craft realistic synthetic datasets. To illustrate the advantages of employing graphic simulation for early-stage testing of perception tasks in the railway domain, this paper presents a comparative analysis of the performance of a SLAM algorithm applied both in a virtual synthetic environment and a real-world scenario. The analysis leverages virtual railway environments created with the latest version of Unreal Engine, facilitating data collection and allowing the examination of challenging scenarios, including low-visibility, dangerous operational modes, and complex environments. The results highlight the feasibility and potentiality of graphic simulation to advance perception tasks in the railway domain.
Related papers
- Synthetica: Large Scale Synthetic Data for Robot Perception [21.415878105900187]
We present Synthetica, a method for large-scale synthetic data generation for training robust state estimators.
This paper focuses on the task of object detection, an important problem which can serve as the front-end for most state estimation problems.
We leverage data from a ray-tracing, generating 2.7 million images, to train highly accurate real-time detection transformers.
We demonstrate state-of-the-art performance on the task of object detection while having detectors that run at 50-100Hz which is 9 times faster than the prior SOTA.
arXiv Detail & Related papers (2024-10-28T15:50:56Z) - A Joint Approach Towards Data-Driven Virtual Testing for Automated Driving: The AVEAS Project [2.4163276807189282]
There is a significant shortage of real-world data to parametrize and/or validate simulations.
This paper presents the results of the German AVEAS research project.
arXiv Detail & Related papers (2024-05-10T07:36:03Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
We present ARSim, a framework designed to enhance real multi-view image data with 3D synthetic objects of interest.
We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it.
The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles.
arXiv Detail & Related papers (2024-03-22T17:49:11Z) - TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation [1.2165229201148093]
This paper presents a visual simulation framework able to generate realistic railway scenarios in a virtual environment.
It automatically produces inertial data and labeled datasets from emulated LiDARs and cameras.
arXiv Detail & Related papers (2023-02-28T11:00:13Z) - Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review [22.53793239186955]
This paper conducted an extensive literature review on the applications of computer vision in intelligent transportation systems (ITS) and autonomous driving (AD)
The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns.
Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings.
arXiv Detail & Related papers (2022-11-09T05:16:01Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Optical flow-based branch segmentation for complex orchard environments [73.11023209243326]
We train a neural network system in simulation only using simulated RGB data and optical flow.
This resulting neural network is able to perform foreground segmentation of branches in a busy orchard environment without additional real-world training or using any special setup or equipment beyond a standard camera.
Our results show that our system is highly accurate and, when compared to a network using manually labeled RGBD data, achieves significantly more consistent and robust performance across environments that differ from the training set.
arXiv Detail & Related papers (2022-02-26T03:38:20Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.