Towards Railway Domain Adaptation for LiDAR-based 3D Detection: Road-to-Rail and Sim-to-Real via SynDRA-BBox
- URL: http://arxiv.org/abs/2507.16413v1
- Date: Tue, 22 Jul 2025 10:04:49 GMT
- Title: Towards Railway Domain Adaptation for LiDAR-based 3D Detection: Road-to-Rail and Sim-to-Real via SynDRA-BBox
- Authors: Xavier Diaz, Gianluca D'Amico, Raul Dominguez-Sanchez, Federico Nesti, Max Ronecker, Giorgio Buttazzo,
- Abstract summary: We introduce SynDRA-BBox, a synthetic dataset designed to support object detection and other vision-based tasks in realistic railway scenarios.<n>To the best of our knowledge, is the first synthetic dataset specifically tailored for 2D and 3D object detection in the railway domain.<n>A state-of-the-art semi-supervised domain adaptation method is adapted to the railway context, enabling the transferability of synthetic data to 3D object detection.
- Score: 3.3810628880631226
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, interest in automatic train operations has significantly increased. To enable advanced functionalities, robust vision-based algorithms are essential for perceiving and understanding the surrounding environment. However, the railway sector suffers from a lack of publicly available real-world annotated datasets, making it challenging to test and validate new perception solutions in this domain. To address this gap, we introduce SynDRA-BBox, a synthetic dataset designed to support object detection and other vision-based tasks in realistic railway scenarios. To the best of our knowledge, is the first synthetic dataset specifically tailored for 2D and 3D object detection in the railway domain, the dataset is publicly available at https://syndra.retis.santannapisa.it. In the presented evaluation, a state-of-the-art semi-supervised domain adaptation method, originally developed for automotive perception, is adapted to the railway context, enabling the transferability of synthetic data to 3D object detection. Experimental results demonstrate promising performance, highlighting the effectiveness of synthetic datasets and domain adaptation techniques in advancing perception capabilities for railway environments.
Related papers
- Synth It Like KITTI: Synthetic Data Generation for Object Detection in Driving Scenarios [3.30184292168618]
We propose a dataset generation pipeline based on the CARLA simulator for 3D object detection on LiDAR point clouds.<n>We are able to train an object detector on the synthetic data and demonstrate strong generalization capabilities to the KITTI dataset.
arXiv Detail & Related papers (2025-02-20T22:27:42Z) - Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
This paper consolidates a set of good practices to finetune large pretrained models for a real-world task.<n>Specifically, we develop several strategies to account for discrepancies between the synthetic data and real driving data.<n>Our insights lead to effective finetuning that results in a $68.8%$ reduction in FID for novel view synthesis over prior arts.
arXiv Detail & Related papers (2024-12-19T03:39:13Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
We propose a novel framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection.
Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines.
arXiv Detail & Related papers (2024-06-17T08:18:41Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - A Comparative Analysis of Visual Odometry in Virtual and Real-World Railways Environments [3.2750823836771685]
This paper presents a comparative analysis of the performance of a SLAM algorithm applied both in a virtual synthetic environment and a real-world scenario.
The results highlight the feasibility and potentiality of graphic simulation to advance perception tasks in the railway domain.
arXiv Detail & Related papers (2024-03-25T18:18:12Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation [1.2165229201148093]
This paper presents a visual simulation framework able to generate realistic railway scenarios in a virtual environment.
It automatically produces inertial data and labeled datasets from emulated LiDARs and cameras.
arXiv Detail & Related papers (2023-02-28T11:00:13Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
Network trained with synthetic data for certain computer vision tasks degrade significantly when tested on real world data.
In this paper, we propose and evaluate novel ways for the betterment of such approaches.
We propose a novel method to efficiently incorporate semantic supervision into this pair selection, which helps in boosting the performance of the model.
arXiv Detail & Related papers (2023-02-08T15:51:54Z) - GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D
LiDAR Segmentation [60.07812405063708]
3D point cloud semantic segmentation is fundamental for autonomous driving.
Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes.
This paper advances the state of the art in this research field.
arXiv Detail & Related papers (2022-07-20T09:06:07Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.