論文の概要: GOLF: Goal-Oriented Long-term liFe tasks supported by human-AI collaboration
- arxiv url: http://arxiv.org/abs/2403.17089v2
- Date: Wed, 17 Apr 2024 15:00:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 00:06:38.077056
- Title: GOLF: Goal-Oriented Long-term liFe tasks supported by human-AI collaboration
- Title(参考訳): GOLF:Goal-Oriented Long-term liFe tasks Support by Human-AI collaboration
- Authors: Ben Wang,
- Abstract要約: ChatGPTと類似の大規模言語モデル(LLM)は、人間とAIの相互作用と情報探索プロセスに革命をもたらした。
本研究は,LLM機能の範囲を日常的なタスク自動化を超えて拡張し,長期的,重要なライフタスクのユーザを支援する。
- 参考スコア(独自算出の注目度): 4.414024076524777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of ChatGPT and similar large language models (LLMs) has revolutionized the human-AI interaction and information-seeking process. Leveraging LLMs as an alternative to search engines, users can now access summarized information tailored to their queries, significantly reducing the cognitive load associated with navigating vast information resources. This shift underscores the potential of LLMs in redefining information access paradigms. Drawing on the foundation of task-focused information retrieval and LLMs' task planning ability, this research extends the scope of LLM capabilities beyond routine task automation to support users in navigating long-term and significant life tasks. It introduces the GOLF framework (Goal-Oriented Long-term liFe tasks), which focuses on enhancing LLMs' ability to assist in significant life decisions through goal orientation and long-term planning. The methodology encompasses a comprehensive simulation study to test the framework's efficacy, followed by model and human evaluations to develop a dataset benchmark for long-term life tasks, and experiments across different models and settings. By shifting the focus from short-term tasks to the broader spectrum of long-term life goals, this research underscores the transformative potential of LLMs in enhancing human decision-making processes and task management, marking a significant step forward in the evolution of human-AI collaboration.
- Abstract(参考訳): ChatGPTと類似の大規模言語モデル(LLM)の出現は、人間とAIの相互作用と情報検索プロセスに革命をもたらした。
LLMを検索エンジンの代替として活用することで、ユーザはクエリに合わせて要約された情報にアクセスでき、膨大な情報リソースをナビゲートする際の認知的負荷を大幅に削減できる。
このシフトは、情報アクセスパラダイムを再定義するLLMの可能性を浮き彫りにしている。
本研究は、タスク中心の情報検索とLCMのタスク計画能力の基盤を基礎として、日常的なタスク自動化を超えてLLM機能の範囲を広げ、長期的かつ重要なライフタスクのユーザを支援する。
GOLFフレームワーク(Goal-Oriented Long-term liFe task)を導入し、ゴール指向と長期計画を通じて重要な人生決定を支援するLLMの能力を向上することに焦点を当てた。
この手法は、フレームワークの有効性をテストするための総合的なシミュレーション研究を含み、続いてモデルと人間の評価を行い、長期のライフタスクのためのデータセットベンチマークを開発し、異なるモデルと設定をまたいだ実験を行う。
本研究は、短期的課題から長期的目標の範囲に焦点を移すことにより、人間の意思決定プロセスとタスクマネジメントの強化におけるLLMの変革的ポテンシャルを浮き彫りにして、人間とAIのコラボレーションの進化における大きな一歩を踏み出した。
関連論文リスト
- The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
大規模言語モデル(LLM)は、様々な分析タスクにおいて、人間のパフォーマンスに近い能力を示している。
本稿では,Human-LLMパートナーシップに着目した構造化ユーザスタディにより,特殊作業におけるLLMの効率と精度について検討する。
論文 参考訳(メタデータ) (2024-10-07T02:30:18Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Benchは、Large Language Models (LLMs) を用いたタスク計画の具体化のためのベンチマークである。
様々な難易度や複雑さのレベルにおいて、制御可能で多様な実施タスクが特徴である。
我々のベンチマークでは、大規模で定量化され、高度に自動化され、きめ細かな診断フレームワークとして認識されている。
論文 参考訳(メタデータ) (2024-10-02T19:56:38Z) - Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
大規模言語モデル(LLM)はプログラミングプラクティスを変革し、コード生成活動に重要な機能を提供する。
本稿では,LLMがプログラミングタスクに与える影響を評価するユーザスタディから洞察を得た上で,プログラミングタスクにおけるそれらの使用に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-01T19:34:46Z) - LLM With Tools: A Survey [0.0]
本稿では,LCMに外部ツールの使用を教える領域における方法論,問題点,展開について述べる。
ユーザ命令を実行可能なプランにマッピングする一連の関数によってガイドされるツール統合のための標準化パラダイムを導入する。
調査の結果,ツール起動タイミング,選択精度,堅牢な推論プロセスの必要性など,さまざまな課題が明らかになった。
論文 参考訳(メタデータ) (2024-09-24T14:08:11Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
LgTS (LLM-Guided Teacher-Student Learning) を提案する。
提案手法では,提案したサブゴールを達成するための事前訓練されたポリシーも必要としない。
論文 参考訳(メタデータ) (2023-10-14T00:07:03Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
本研究では,長期的スパース・リワードタスクにおけるメタラーニングを実現する手法を提案する。
私たちの中核となる考え方は、メタ学習中にオフラインデータセットから抽出された事前経験を活用することです。
論文 参考訳(メタデータ) (2022-04-25T17:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。