Strategies to Improve Real-World Applicability of Laparoscopic Anatomy Segmentation Models
- URL: http://arxiv.org/abs/2403.17192v2
- Date: Mon, 15 Apr 2024 16:55:38 GMT
- Title: Strategies to Improve Real-World Applicability of Laparoscopic Anatomy Segmentation Models
- Authors: Fiona R. Kolbinger, Jiangpeng He, Jinge Ma, Fengqing Zhu,
- Abstract summary: We systematically analyze the impact of class characteristics, training and test data composition, and modeling parameters on eight segmentation metrics.
Our findings support two adjustments to account for data biases in surgical data science.
- Score: 6.8726432208129555
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate identification and localization of anatomical structures of varying size and appearance in laparoscopic imaging are necessary to leverage the potential of computer vision techniques for surgical decision support. Segmentation performance of such models is traditionally reported using metrics of overlap such as IoU. However, imbalanced and unrealistic representation of classes in the training data and suboptimal selection of reported metrics have the potential to skew nominal segmentation performance and thereby ultimately limit clinical translation. In this work, we systematically analyze the impact of class characteristics (i.e., organ size differences), training and test data composition (i.e., representation of positive and negative examples), and modeling parameters (i.e., foreground-to-background class weight) on eight segmentation metrics: accuracy, precision, recall, IoU, F1 score (Dice Similarity Coefficient), specificity, Hausdorff Distance, and Average Symmetric Surface Distance. Our findings support two adjustments to account for data biases in surgical data science: First, training on datasets that are similar to the clinical real-world scenarios in terms of class distribution, and second, class weight adjustments to optimize segmentation model performance with regard to metrics of particular relevance in the respective clinical setting.
Related papers
- SpecstatOR: Speckle statistics-based iOCT Segmentation Network for Ophthalmic Surgery [39.66047935237083]
We use statistical analysis of speckle patterns to incorporate statistical pathology-specific prior knowledge.
Our findings indicate statistically different speckle patterns within the retina and between retinal layers and surgical tools.
The proposed segmentation model aims to refine the statistical findings based on prior tissue understanding.
arXiv Detail & Related papers (2024-04-30T11:49:29Z) - Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer [6.887244952811574]
We propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet.
Our approach enhances the network's ability to handle diverse anatomical structures and subtle image details.
It consistently outperforms traditional CNNs with fixed kernel sizes with a similar number of parameters.
arXiv Detail & Related papers (2024-04-17T13:18:39Z) - PULASki: Learning inter-rater variability using statistical distances to
improve probabilistic segmentation [36.136619420474766]
We propose the PULASki for biomedical image segmentation that accurately captures variability in expert annotations.
Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure.
Our method can also be applied to a wide range of multi-label segmentation tasks and is useful for downstream tasks such as hemodynamic modelling.
arXiv Detail & Related papers (2023-12-25T10:31:22Z) - To pretrain or not to pretrain? A case study of domain-specific
pretraining for semantic segmentation in histopathology [0.9208007322096533]
Fine-tuning (or transfer learning) is the most effective method for digital pathology vision applications such as disease classification and semantic segmentation.
Here, we compare the performance of gland and cell segmentation tasks with histopathology domain-specific and non-domain-specific (real-world images) pretrained weights.
The results indicate that performance gain using domain-specific pretrained weights depends on both the task and the size of the training dataset.
arXiv Detail & Related papers (2023-07-06T20:23:39Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Multi-Task, Multi-Domain Deep Segmentation with Shared Representations
and Contrastive Regularization for Sparse Pediatric Datasets [0.5249805590164902]
We propose to train a segmentation model on multiple datasets, arising from different parts of the anatomy, in a multi-task and multi-domain learning framework.
The proposed segmentation network comprises shared convolutional filters, domain-specific batch normalization parameters that compute the respective dataset statistics.
We evaluate our contributions on two pediatric imaging datasets of the ankle and shoulder joints for bone segmentation.
arXiv Detail & Related papers (2021-05-21T12:26:05Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.