Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era
- URL: http://arxiv.org/abs/2403.17205v1
- Date: Mon, 25 Mar 2024 21:31:39 GMT
- Title: Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era
- Authors: Pau Escofet, Anabel Ovide, Medina Bandic, Luise Prielinger, Hans van Someren, Sebastian Feld, Eduard Alarcón, Sergi Abadal, Carmen G. Almudéver,
- Abstract summary: We introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications.
Our evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9times$ and $1.6times$ improvement in terms of execution time and non-local communications.
- Score: 2.465579331213113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing represents a paradigm shift in computation, offering the potential to solve complex problems intractable for classical computers. Although current quantum processors already consist of a few hundred of qubits, their scalability remains a significant challenge. Modular quantum computing architectures have emerged as a promising approach to scale up quantum computing systems. This paper delves into the critical aspects of distributed multi-core quantum computing, focusing on quantum circuit mapping, a fundamental task to successfully execute quantum algorithms across cores while minimizing inter-core communications. We derive the theoretical bounds on the number of non-local communications needed for random quantum circuits and introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications. Our exhaustive evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9\times$ and $1.6\times$ improvement in terms of execution time and non-local communications, respectively, compared to the best performing algorithm. HQA emerges as a very promising scalable approach for mapping quantum circuits into multi-core architectures, positioning it as a valuable tool for harnessing the potential of quantum computing at scale.
Related papers
- Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures [1.8781124875646162]
This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based approach for efficient quantum circuit compilation and mapping.
In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn theses for a specific multi-core architecture.
arXiv Detail & Related papers (2024-06-17T12:09:11Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
arXiv Detail & Related papers (2023-10-03T09:54:41Z) - Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures [1.1288814203214292]
Quantum computers are expected to adopt a modular approach, featuring clusters of tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical for improving quantum computing systems' performance and scalability.
We propose the Hungarian Qubit Assignment (HQA) algorithm, which leverages the Hungarian algorithm to improve qubit-to-core assignment.
arXiv Detail & Related papers (2023-09-21T15:48:45Z) - Mapping quantum algorithms to multi-core quantum computing architectures [1.8602413562219944]
Multi-core quantum computer architecture poses new challenges such as expensive inter-core communication.
A detailed critical discussion of the quantum circuit mapping problem for multi-core quantum computing architectures is provided.
We further explore the performance of a mapping method, which is formulated as a partitioning over time graph problem.
arXiv Detail & Related papers (2023-03-28T16:46:59Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.