Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures
- URL: http://arxiv.org/abs/2310.01921v2
- Date: Wed, 4 Sep 2024 08:46:05 GMT
- Title: Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures
- Authors: Sahar Ben Rached, Isaac Lopez Agudo, Santiago Rodrigo, Medina Bandic, Sebastian Feld, Hans van Someren, Eduard Alarcón, Carmen G. Almudéver, Sergi Abadal,
- Abstract summary: We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
- Score: 2.465579331213113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modular quantum processor architectures are envisioned as a promising solution for the scalability of quantum computing systems beyond the Noisy Intermediate Scale Quantum (NISQ) devices era. Based upon interconnecting tens to hundreds of quantum cores via a quantum intranet, this approach unravels the pressing limitations of densely qubit-packed monolithic processors, mainly by mitigating the requirements of qubit control and enhancing qubit isolation, and therefore enables executing large-scale algorithms on quantum computers. In order to optimize such architectures, it is crucial to analyze the quantum state transfers occurring via inter-core communication networks, referred to as inter-core qubit traffic. This would also provide insights to improve the software and hardware stack for multi-core quantum computers. To this aim, we present a pioneering characterization of the spatio-temporal inter-core qubit traffic in large-scale circuits. The programs are executed on an all-to-all connected multi-core architecture that supports up to around 1000 qubits. We characterize the qubit traffic based on multiple performance metrics to assess the computational process and the communication overhead. Based on the showcased results, we conclude on the scalability of the presented algorithms, provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era [2.465579331213113]
We introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications.
Our evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9times$ and $1.6times$ improvement in terms of execution time and non-local communications.
arXiv Detail & Related papers (2024-03-25T21:31:39Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors [1.3230570759583702]
This work presents a comparative analysis of the resulting communication overhead among three processor topologies.
According to performance metrics of communication-to-computation ratio, mean qubit hotspotness, and temporal burstiness, the square lattice layout is favourable for quantum computer architectures at a scale.
arXiv Detail & Related papers (2024-02-01T10:16:04Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - MECH: Multi-Entry Communication Highway for Superconducting Quantum
Chiplets [8.331379159321271]
As the computing scale increases, communication between qubits would become a more severe bottleneck.
We propose a multi-entry communication highway (MECH) mechanism to trade ancillary qubits for program.
This implies a more efficient and less error-prone compilation of quantum programs.
arXiv Detail & Related papers (2023-05-09T03:20:56Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Mapping quantum algorithms to multi-core quantum computing architectures [1.8602413562219944]
Multi-core quantum computer architecture poses new challenges such as expensive inter-core communication.
A detailed critical discussion of the quantum circuit mapping problem for multi-core quantum computing architectures is provided.
We further explore the performance of a mapping method, which is formulated as a partitioning over time graph problem.
arXiv Detail & Related papers (2023-03-28T16:46:59Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Characterizing Qubit Traffic of a Quantum Intranet aiming at Modular
Quantum Computers [1.8602413562219944]
Quantum-core processors are envisioned as the ultimate solution for the scalability of quantum computers.
We present a technique to perform a-temporal characterization of quantum circuits running in multi-chip interconnected quantum computers.
arXiv Detail & Related papers (2022-08-31T21:33:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.