論文の概要: Disambiguate Entity Matching through Relation Discovery with Large Language Models
- arxiv url: http://arxiv.org/abs/2403.17344v1
- Date: Tue, 26 Mar 2024 03:07:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:55:40.549490
- Title: Disambiguate Entity Matching through Relation Discovery with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた関係発見による曖昧なエンティティマッチング
- Authors: Zezhou Huang,
- Abstract要約: 本稿では、純粋に意味的な類似点から、エンティティ間の「関係」を理解し定義することへ焦点を移す新しいアプローチを提案する。
本手法では,タスクに関連する一連の関係を事前に定義することにより,類似性のスペクトルをより効率的にナビゲートすることができる。
- 参考スコア(独自算出の注目度): 1.6317061277457001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity matching is a critical challenge in data integration and cleaning, central to tasks like fuzzy joins and deduplication. Traditional approaches have focused on overcoming fuzzy term representations through methods such as edit distance, Jaccard similarity, and more recently, embeddings and deep neural networks, including advancements from large language models (LLMs) like GPT. However, the core challenge in entity matching extends beyond term fuzziness to the ambiguity in defining what constitutes a "match," especially when integrating with external databases. This ambiguity arises due to varying levels of detail and granularity among entities, complicating exact matches. We propose a novel approach that shifts focus from purely identifying semantic similarities to understanding and defining the "relations" between entities as crucial for resolving ambiguities in matching. By predefining a set of relations relevant to the task at hand, our method allows analysts to navigate the spectrum of similarity more effectively, from exact matches to conceptually related entities.
- Abstract(参考訳): エンティティマッチングは、ファジィ結合や重複解消といったタスクの中心にある、データ統合とクリーニングにおいて重要な課題である。
従来のアプローチでは、編集距離やJaccardの類似性、最近では、GPTのような大規模言語モデル(LLM)の進歩を含む組み込みやディープニューラルネットワークなど、ファジィな項表現の克服に重点を置いてきた。
しかし、エンティティマッチングにおける中核的な課題は、特に外部データベースとの統合において「マッチ」を構成するものを定義することの曖昧さにまで及んでいる。
この曖昧さは、実体間の詳細と粒度の異なるレベルから生じ、正確な一致を複雑にする。
本稿では,意味的類似性を純粋に識別するアプローチから,マッチングにおけるあいまいさの解消に不可欠なエンティティ間の「関係」を理解し定義するアプローチを提案する。
本手法では,タスクに関連する一連の関係を事前に定義することにより,類似性のスペクトルをより効率的にナビゲートすることができる。
関連論文リスト
- SEG:Seeds-Enhanced Iterative Refinement Graph Neural Network for Entity Alignment [13.487673375206276]
本稿では,マルチソースデータと反復的シード拡張を融合したソフトラベル伝搬フレームワークを提案する。
正試料間距離と負試料の差分処理を行う双方向重み付き共同損失関数を実装した。
提案手法は,既存の半教師付きアプローチよりも優れており,複数のデータセットにおいて優れた結果が得られた。
論文 参考訳(メタデータ) (2024-10-28T04:50:46Z) - mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view
Contrastive Learning [54.523172171533645]
CrossNERは多言語コーパスの不足により不均一な性能から生じる課題に直面している。
言語横断的名前付きエンティティ認識(mCL-NER)のためのマルチビューコントラスト学習を提案する。
40言語にまたがるXTREMEベンチマーク実験では、従来のデータ駆動型およびモデルベースアプローチよりもmCL-NERの方が優れていることを示した。
論文 参考訳(メタデータ) (2023-08-17T16:02:29Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
現在のシーングラフ生成(SGG)手法は、コンテキスト情報を探索し、エンティティペア間の関係を予測する。
被写体と対象物の組み合わせが多様であるため、各述語カテゴリーには大きなクラス内変異が存在する。
プロトタイプベースのEmbedding Network (PE-Net) は、エンティティ/述語を、プロトタイプに準拠したコンパクトで独特な表現でモデル化する。
PLは、PE-Netがそのようなエンティティ述語マッチングを効率的に学習するのを助けるために導入され、不明瞭なエンティティ述語マッチングを緩和するためにプロトタイプ正規化(PR)が考案されている。
論文 参考訳(メタデータ) (2023-03-13T13:30:59Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot セマンティックセグメンテーション(Few-shot semantic segmentation)は、新しいクラスの各ピクセルを、わずかに注釈付きサポートイメージで検索するタスクである。
本稿では,クラス間の類似性に起因するマッチングノイズを抑制するために,機能拡張コンテキスト認識ネットワーク(FECANet)を提案する。
さらに,前景と背景の余分な対応関係を符号化する新たな相関再構成モジュールを提案する。
論文 参考訳(メタデータ) (2023-01-19T16:31:13Z) - Contrastive Video-Language Segmentation [41.1635597261304]
本稿では,ビデオコンテンツ中の自然言語文によって参照される特定のオブジェクトをセグメント化する問題に焦点をあてる。
本研究では, 視覚的・言語的モダリティを, 対照的な学習目的を通した明示的な方法で解釈することを提案する。
論文 参考訳(メタデータ) (2021-09-29T01:40:58Z) - Semantic Correspondence with Transformers [68.37049687360705]
本稿では,変換器を用いたコストアグリゲーション(CAT)を提案し,意味論的に類似した画像間の密接な対応を見出す。
初期相関マップと多レベルアグリゲーションを曖昧にするための外観親和性モデリングを含む。
提案手法の有効性を示す実験を行い,広範囲にわたるアブレーション研究を行った。
論文 参考訳(メタデータ) (2021-06-04T14:39:03Z) - End-to-End Hierarchical Relation Extraction for Generic Form
Understanding [0.6299766708197884]
本稿では,エンティティ検出とリンク予測を併用する新しいディープニューラルネットワークを提案する。
本モデルでは,複数段階の意図的U-Netアーキテクチャを拡張し,リンク予測のための部分強度場と部分連想場を拡張した。
本稿では,ノイズの多い文書データセットの形式理解におけるモデルの有効性を示す。
論文 参考訳(メタデータ) (2021-06-02T06:51:35Z) - Exploiting Transitivity Constraints for Entity Matching in Knowledge
Graphs [1.7080853582489066]
特定された実体対に対する過渡性のアドホックな実施は、精度を劇的に低下させる可能性があることを示した。
提案手法は,与えられた類似度尺度から始まり,同一実世界のオブジェクトを参照していると認識されたエンティティペアのセットを生成し,クラスタ編集アルゴリズムを適用し,スプリアスリンクを多数追加することなく推移性を実現する。
論文 参考訳(メタデータ) (2021-04-22T10:57:01Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。