論文の概要: Bridging Textual and Tabular Worlds for Fact Verification: A Lightweight, Attention-Based Model
- arxiv url: http://arxiv.org/abs/2403.17361v1
- Date: Tue, 26 Mar 2024 03:54:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:45:50.124548
- Title: Bridging Textual and Tabular Worlds for Fact Verification: A Lightweight, Attention-Based Model
- Title(参考訳): ファクト検証のためのブリッジングテクストとタブラルワールド:軽量・アテンションベースモデル
- Authors: Shirin Dabbaghi Varnosfaderani, Canasai Kruengkrai, Ramin Yahyapour, Junichi Yamagishi,
- Abstract要約: FEVEROUSは、事実抽出と検証タスクに焦点を当てた、ベンチマークおよび研究イニシアチブである。
本稿では,モダリティ変換の必要性を解消する,単純だが強力なモデルを提案する。
提案手法は,異なるデータ型間の遅延接続を効果的に利用することにより,包括的かつ信頼性の高い検証予測を実現する。
- 参考スコア(独自算出の注目度): 34.1224836768324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: FEVEROUS is a benchmark and research initiative focused on fact extraction and verification tasks involving unstructured text and structured tabular data. In FEVEROUS, existing works often rely on extensive preprocessing and utilize rule-based transformations of data, leading to potential context loss or misleading encodings. This paper introduces a simple yet powerful model that nullifies the need for modality conversion, thereby preserving the original evidence's context. By leveraging pre-trained models on diverse text and tabular datasets and by incorporating a lightweight attention-based mechanism, our approach efficiently exploits latent connections between different data types, thereby yielding comprehensive and reliable verdict predictions. The model's modular structure adeptly manages multi-modal information, ensuring the integrity and authenticity of the original evidence are uncompromised. Comparative analyses reveal that our approach exhibits competitive performance, aligning itself closely with top-tier models on the FEVEROUS benchmark.
- Abstract(参考訳): FEVEROUSは、構造化されていないテキストと構造化された表データを含む事実抽出と検証タスクに焦点を当てた、ベンチマークおよび研究イニシアチブである。
FEVEROUSでは、既存の作業は広範囲の事前処理に頼り、ルールベースのデータ変換を利用することが多いため、潜在的なコンテキスト損失や誤解を招くエンコーディングにつながる。
本稿では,モダリティ変換の必要性を解消し,元のエビデンスの文脈を保存するための,シンプルながら強力なモデルを提案する。
各種テキストおよび表データセットの事前学習モデルを活用するとともに、軽量な注意に基づくメカニズムを取り入れることで、異なるデータ型間の遅延接続を効果的に活用し、包括的で信頼性の高い検証予測を実現する。
モデルのモジュラー構造は、マルチモーダル情報を十分に管理し、元の証拠の完全性と信頼性が未妥協であることを保証する。
比較分析の結果,提案手法は競合性能を示し,FEVEROUSベンチマークの上位モデルと密接に一致していることがわかった。
関連論文リスト
- Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Entity-level Factual Adaptiveness of Fine-tuning based Abstractive
Summarization Models [31.84120883461332]
我々は、微調整に基づく要約モデルの頑健さと知識衝突を解析する。
本稿では,制御可能な対実データ拡張手法を提案する。
論文 参考訳(メタデータ) (2024-02-23T07:53:39Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、より多くの洞察を提供するさまざまなメトリクスの使用を可能にします。
本稿では,言語モデル(LM)のパワーを活用し,効率と効率を向上させる新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Syntactically Robust Training on Partially-Observed Data for Open
Information Extraction [25.59133746149343]
オープン情報抽出モデルは十分な監督力を持った有望な結果を示している。
そこで本研究では,統語論的に頑健な学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:39:13Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
シーケンス構造をトレーニング可能な,シンプルなモデルを提案する。
Fact extract and VERification のための大規模データセットの結果、我々のモデルはグラフベースのアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-02T05:40:12Z) - The Surprising Performance of Simple Baselines for Misinformation
Detection [4.060731229044571]
我々は、現代のトランスフォーマーベースの言語モデルの広いセットのパフォーマンスを調べます。
誤情報検出の新たな手法の創出と評価のベースラインとして,本フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-14T16:25:22Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。