On permutation-invariant neural networks
- URL: http://arxiv.org/abs/2403.17410v2
- Date: Thu, 28 Mar 2024 22:28:02 GMT
- Title: On permutation-invariant neural networks
- Authors: Masanari Kimura, Ryotaro Shimizu, Yuki Hirakawa, Ryosuke Goto, Yuki Saito,
- Abstract summary: The emergence of neural network architectures such as Deep Sets and Transformers has presented a significant advancement in the treatment of set-based data.
This comprehensive survey aims to provide an overview of the diverse problem settings and ongoing research efforts pertaining to neural networks that approximate set functions.
- Score: 8.633259015417993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional machine learning algorithms have traditionally been designed under the assumption that input data follows a vector-based format, with an emphasis on vector-centric paradigms. However, as the demand for tasks involving set-based inputs has grown, there has been a paradigm shift in the research community towards addressing these challenges. In recent years, the emergence of neural network architectures such as Deep Sets and Transformers has presented a significant advancement in the treatment of set-based data. These architectures are specifically engineered to naturally accommodate sets as input, enabling more effective representation and processing of set structures. Consequently, there has been a surge of research endeavors dedicated to exploring and harnessing the capabilities of these architectures for various tasks involving the approximation of set functions. This comprehensive survey aims to provide an overview of the diverse problem settings and ongoing research efforts pertaining to neural networks that approximate set functions. By delving into the intricacies of these approaches and elucidating the associated challenges, the survey aims to equip readers with a comprehensive understanding of the field. Through this comprehensive perspective, we hope that researchers can gain valuable insights into the potential applications, inherent limitations, and future directions of set-based neural networks. Indeed, from this survey we gain two insights: i) Deep Sets and its variants can be generalized by differences in the aggregation function, and ii) the behavior of Deep Sets is sensitive to the choice of the aggregation function. From these observations, we show that Deep Sets, one of the well-known permutation-invariant neural networks, can be generalized in the sense of a quasi-arithmetic mean.
Related papers
- Relational Composition in Neural Networks: A Survey and Call to Action [54.47858085003077]
Many neural nets appear to represent data as linear combinations of "feature vectors"
We argue that this success is incomplete without an understanding of relational composition.
arXiv Detail & Related papers (2024-07-19T20:50:57Z) - Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
We show that when the target value is conditioned on both the input set and subset, it is essential to incorporate an textitinvariant sufficient statistic of the superset into the subset of interest.
This ensures that the output value remains invariant to permutations of the subset and its corresponding superset, enabling identification of the specific superset from which the subset originated.
arXiv Detail & Related papers (2024-02-05T16:09:35Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
arXiv Detail & Related papers (2023-06-11T23:13:51Z) - Multiobjective Evolutionary Pruning of Deep Neural Networks with
Transfer Learning for improving their Performance and Robustness [15.29595828816055]
This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm.
We use Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm.
Experiments show that our proposal achieves promising results in all the objectives, and direct relation are presented.
arXiv Detail & Related papers (2023-02-20T19:33:38Z) - Learning Invariances with Generalised Input-Convex Neural Networks [3.5611181253285253]
We introduce a novel class of flexible neural networks that represent functions that are guaranteed to have connected level sets forming smooth networks.
We show that our novel technique for characterising invariances is a powerful generative data exploration tool in real-world applications, such as computational chemistry.
arXiv Detail & Related papers (2022-04-14T15:03:30Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learn to Predict Sets Using Feed-Forward Neural Networks [63.91494644881925]
This paper addresses the task of set prediction using deep feed-forward neural networks.
We present a novel approach for learning to predict sets with unknown permutation and cardinality.
We demonstrate the validity of our set formulations on relevant vision problems.
arXiv Detail & Related papers (2020-01-30T01:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.