論文の概要: Sharing the Cost of Success: A Game for Evaluating and Learning Collaborative Multi-Agent Instruction Giving and Following Policies
- arxiv url: http://arxiv.org/abs/2403.17497v1
- Date: Tue, 26 Mar 2024 08:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 16:06:48.698586
- Title: Sharing the Cost of Success: A Game for Evaluating and Learning Collaborative Multi-Agent Instruction Giving and Following Policies
- Title(参考訳): 成功のコストの共有: 協力的マルチエージェント指導のギビングとフォローポリシーの評価と学習のためのゲーム
- Authors: Philipp Sadler, Sherzod Hakimov, David Schlangen,
- Abstract要約: 本稿では、2人のプレイヤーが視覚と言語の観察を協調する必要がある、挑戦的な対話型参照ゲームを提案する。
本稿では,PPO(Proximal Policy Optimization)の標準設定が,パートナー行動のブートストラップによって高い成功率を達成することを示す。
神経パートナーのペアリングは、繰り返し演奏する際の測定された関節の労力を減少させる。
- 参考スコア(独自算出の注目度): 19.82683688911297
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players' assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement -- which invites further research in the direction of cost-sharing in collaborative interactions.
- Abstract(参考訳): 協調的な目標志向の設定では、参加者は成果を達成することに関心があるだけでなく、(互いに適応することによって)相互作用に費やした努力を暗黙的に交渉する。
本研究では,2人のプレイヤーが視覚と言語観測に基づいて協調する必要がある,対話型参照ゲームを提案する。
このゲームにおける学習信号は、達成したゴールと、相互作用中のプレイヤーの想定された努力を考慮に入れたスコア(プレイ後の)である。
本稿では,PPOの標準設定が,人間と人間の相互作用の分析から洞察を得られるヒューリスティックなパートナー行動によってブートストラップされた場合,高い成功率を達成することを示す。
そして、ペアリングされたニューラルパートナーは、繰り返し遊んでいるときに測定された関節の労力を減らすことに気付きました。
しかし、合理的なヒューリスティックなペアリングと比べれば、まだ改善の余地がある。
関連論文リスト
- A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
本稿では、プレイヤーがゴール状態自体を交渉しなければならない2Dオブジェクト配置ゲームを提案する。
我々は,人間プレイヤーが様々な役割を担っていることを実証的に示し,バランスの取れた協調によってタスクのパフォーマンスが向上することを示した。
論文 参考訳(メタデータ) (2024-06-12T13:35:10Z) - GOMA: Proactive Embodied Cooperative Communication via Goal-Oriented Mental Alignment [72.96949760114575]
我々は、ゴール指向メンタルアライメント(GOMA)という新しい協調コミュニケーションフレームワークを提案する。
GOMAは、目標に関連のあるエージェントの精神状態のミスアライメントを最小限に抑える計画問題として、言語コミュニケーションを定式化している。
我々は,Overcooked(マルチプレイヤーゲーム)とVirtualHome(家庭用シミュレータ)の2つの挑戦環境において,強いベースラインに対するアプローチを評価する。
論文 参考訳(メタデータ) (2024-03-17T03:52:52Z) - Aligning Individual and Collective Objectives in Multi-Agent Cooperation [18.082268221987956]
混合モチベーション協調は、マルチエージェント学習における最も顕著な課題の1つである。
textbftextitAltruistic textbftextitGradient textbftextitAdjustment (textbftextitAgA) という新しい最適化手法を導入する。
我々は,ベンチマーク環境によるAgAアルゴリズムの有効性を評価し,小規模エージェントとの混合モチベーションを検証した。
論文 参考訳(メタデータ) (2024-02-19T08:18:53Z) - The Machine Psychology of Cooperation: Can GPT models operationalise prompts for altruism, cooperation, competitiveness and selfishness in economic games? [0.0]
GPT-3.5大言語モデル(LLM)を用いて,協調的,競争的,利他的,利己的行動の自然言語記述を操作可能とした。
被験者と実験心理学研究で用いられるのと同様のプロトコルを用いて,課題環境を記述するためのプロンプトを用いた。
この結果から,LLM が様々な協調姿勢の自然言語記述を適切な作業行動の記述にある程度翻訳できることが示唆された。
論文 参考訳(メタデータ) (2023-05-13T17:23:16Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は,競争行動の社会的影響に基づく新しい強化学習機構を提案する。
提案モデルでは, 人工エージェントの学習を調節するための競合スコアを導出するために, 客観的, 社会的認知的メカニズムを集約する。
論文 参考訳(メタデータ) (2022-08-22T14:06:06Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は、競合する社会的影響に基づく新しい学習メカニズムの提供に焦点を当てる。
本研究は,競争競合の概念に基づいて,これらのエージェントの評価を人的視点から変えられるかを検討することを目的とする。
論文 参考訳(メタデータ) (2020-11-02T21:54:18Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
外部のエージェントチームによるパフォーマンスの競争が社会的影響として作用するかどうかを検討する。
以上の結果から,外部競争の影響により精度と一般化が向上し,コミュニケーション言語が急速に出現することが示唆された。
論文 参考訳(メタデータ) (2020-03-04T01:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。