論文の概要: WordRobe: Text-Guided Generation of Textured 3D Garments
- arxiv url: http://arxiv.org/abs/2403.17541v2
- Date: Sun, 14 Jul 2024 22:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 01:15:36.285040
- Title: WordRobe: Text-Guided Generation of Textured 3D Garments
- Title(参考訳): WordRobe:テクスチャ付き3Dガーメントのテキストガイド
- Authors: Astitva Srivastava, Pranav Manu, Amit Raj, Varun Jampani, Avinash Sharma,
- Abstract要約: WordRobeは、ユーザフレンドリーなテキストプロンプトから非ポーズでテクスチャ化された3Dメッシュを生成するための新しいフレームワークである。
本研究では,3次元衣服空間の学習,衣服合成,テクスチャ合成において,現在のSOTAよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 30.614451083408266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we tackle a new and challenging problem of text-driven generation of 3D garments with high-quality textures. We propose "WordRobe", a novel framework for the generation of unposed & textured 3D garment meshes from user-friendly text prompts. We achieve this by first learning a latent representation of 3D garments using a novel coarse-to-fine training strategy and a loss for latent disentanglement, promoting better latent interpolation. Subsequently, we align the garment latent space to the CLIP embedding space in a weakly supervised manner, enabling text-driven 3D garment generation and editing. For appearance modeling, we leverage the zero-shot generation capability of ControlNet to synthesize view-consistent texture maps in a single feed-forward inference step, thereby drastically decreasing the generation time as compared to existing methods. We demonstrate superior performance over current SOTAs for learning 3D garment latent space, garment interpolation, and text-driven texture synthesis, supported by quantitative evaluation and qualitative user study. The unposed 3D garment meshes generated using WordRobe can be directly fed to standard cloth simulation & animation pipelines without any post-processing.
- Abstract(参考訳): 本稿では,高品質なテクスチャを用いた3D衣料のテクスチャ生成という,テキスト駆動による新たな課題に取り組む。
ユーザフレンドリーなテキストプロンプトから非ポーズでテクスチャ化された3Dメッシュを生成するための新しいフレームワークであるWordRobeを提案する。
そこで我々は,新しい粗いトレーニング戦略と潜伏解離の損失を用いて3次元衣服の潜伏表現を学習し,より潜伏補間を促進させることにより,これを実現した。
その後,布地をCLIP埋め込み空間に整列させ,テキストによる3D衣料生成と編集を可能にする。
外観モデリングでは、制御ネットのゼロショット生成機能を利用して、単一のフィードフォワード推論ステップでビュー一貫性のあるテクスチャマップを合成し、既存の手法と比較して生成時間を劇的に短縮する。
定量的評価と質的ユーザスタディによって支援された3次元衣服の潜伏空間、衣服補間、テキスト駆動テクスチャ合成の学習において、現在のSOTAよりも優れた性能を示す。
WordRobeを使って生成された非ポーズの3Dメッシュは、後処理なしで標準的な布のシミュレーションとアニメーションパイプラインに直接供給することができる。
関連論文リスト
- Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects [54.80813150893719]
高品質なテクスチャを20秒未満で生成することを目的とした,2つのシーケンシャルネットワークで構成される新しいフィードフォワード方式であるMeta 3D TextureGenを紹介する。
提案手法は,2次元空間の3次元セマンティクスにテキスト・ツー・イメージ・モデルを適用し,それらを完全かつ高解像度なUVテクスチャマップに融合することにより,品質とスピードを向上する。
さらに、任意の比率で任意のテクスチャをアップスケーリングできるテクスチャ拡張ネットワークを導入し、4kピクセルの解像度テクスチャを生成します。
論文 参考訳(メタデータ) (2024-07-02T17:04:34Z) - GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details [31.92583566128599]
伝統的な3D衣服の作成は、スケッチ、モデリング、紫外線マッピング、時間のかかるプロセスを含む労働集約型である。
本稿では,GarmentDreamerを提案する。GarmentDreamerは,テキストプロンプトから3D衣料を生成するためのガイダンスとして,3Dガウススプラッティング(GS)を利用する新しい手法である。
論文 参考訳(メタデータ) (2024-05-20T23:54:28Z) - EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion [5.158983929861116]
EucliDreamerは、テキストとプロンプトが与えられた3次元モデルのテクスチャを生成するための、シンプルで効果的な方法である。
テクスチャは3次元表面上の暗黙の関数としてパラメータ化され、スコア蒸留サンプリング(SDS)プロセスと微分レンダリングで最適化される。
論文 参考訳(メタデータ) (2024-04-16T04:44:16Z) - DressCode: Autoregressively Sewing and Generating Garments from Text Guidance [61.48120090970027]
DressCodeは、初心者向けのデザインを民主化し、ファッションデザイン、バーチャルトライオン、デジタルヒューマン創造において大きな可能性を秘めている。
まず,テキスト条件の埋め込みとクロスアテンションを統合して縫製パターンを生成する,GPTベースのアーキテクチャであるSewingGPTを紹介する。
次に、トレーニング済みの安定拡散を調整し、タイルベースの衣服用物理レンダリング(PBR)テクスチャを生成します。
論文 参考訳(メタデータ) (2024-01-29T16:24:21Z) - Control3D: Towards Controllable Text-to-3D Generation [107.81136630589263]
本稿では,手書きスケッチ,すなわちコントロール3Dについてテキストから3D生成条件を提案する。
2次元条件付き拡散モデル(ControlNet)を再構成し、NeRFとしてパラメータ化された3次元シーンの学習を誘導する。
合成3Dシーン上での描画画像のスケッチを直接推定するために,事前学習可能なフォト・ツー・スケッチ・モデルを利用する。
論文 参考訳(メタデータ) (2023-11-09T15:50:32Z) - ATT3D: Amortized Text-to-3D Object Synthesis [78.96673650638365]
我々は、個別にではなく、統一されたモデルと同時に多くのプロンプトをトレーニングすることで、テキストプロンプトに対する最適化を保留する。
我々のフレームワークであるAmortized text-to-3D (ATT3D)は、プロンプト間の知識共有を可能にし、未知のセットアップに一般化し、新しいアセットのためのテキストと単純なアニメーション間のスムーズなスムーズさを実現する。
論文 参考訳(メタデータ) (2023-06-06T17:59:10Z) - TAPS3D: Text-Guided 3D Textured Shape Generation from Pseudo Supervision [114.56048848216254]
テキスト誘導型3次元形状生成器を疑似キャプションで訓練するための新しいフレームワークTAPS3Dを提案する。
レンダリングされた2D画像に基づいて,CLIP語彙から関連する単語を検索し,テンプレートを用いて擬似キャプションを構築する。
構築したキャプションは、生成された3次元形状の高レベルなセマンティック管理を提供する。
論文 参考訳(メタデータ) (2023-03-23T13:53:16Z) - TEXTure: Text-Guided Texturing of 3D Shapes [71.13116133846084]
TEXTureは,テクスチャのテクスチャのテクスチャの編集,編集,転送を行う新しい方法である。
表面テクスチャを明示することなくシームレスな3次元テクスチャを生成する3次元マップ分割プロセスを定義する。
論文 参考訳(メタデータ) (2023-02-03T13:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。