論文の概要: EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion
- arxiv url: http://arxiv.org/abs/2404.10279v1
- Date: Tue, 16 Apr 2024 04:44:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 18:02:32.392317
- Title: EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion
- Title(参考訳): EucliDreamer:Depth-Conditioned Stable Diffusionを用いた3次元モデルのための高速かつ高品質なテクスチャ
- Authors: Cindy Le, Congrui Hetang, Chendi Lin, Ang Cao, Yihui He,
- Abstract要約: EucliDreamerは、テキストとプロンプトが与えられた3次元モデルのテクスチャを生成するための、シンプルで効果的な方法である。
テクスチャは3次元表面上の暗黙の関数としてパラメータ化され、スコア蒸留サンプリング(SDS)プロセスと微分レンダリングで最適化される。
- 参考スコア(独自算出の注目度): 5.158983929861116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present EucliDreamer, a simple and effective method to generate textures for 3D models given text prompts and meshes. The texture is parametrized as an implicit function on the 3D surface, which is optimized with the Score Distillation Sampling (SDS) process and differentiable rendering. To generate high-quality textures, we leverage a depth-conditioned Stable Diffusion model guided by the depth image rendered from the mesh. We test our approach on 3D models in Objaverse and conducted a user study, which shows its superior quality compared to existing texturing methods like Text2Tex. In addition, our method converges 2 times faster than DreamFusion. Through text prompting, textures of diverse art styles can be produced. We hope Euclidreamer proides a viable solution to automate a labor-intensive stage in 3D content creation.
- Abstract(参考訳): EucliDreamerは、テキストプロンプトとメッシュが与えられた3次元モデルのテクスチャを生成するための、シンプルで効果的な方法である。
テクスチャは3次元表面上の暗黙の関数としてパラメータ化され、スコア蒸留サンプリング(SDS)プロセスと微分レンダリングで最適化される。
高品質なテクスチャを生成するために,メッシュから描画した深度画像によって誘導される深度条件の安定拡散モデルを利用する。
我々はObjaverseの3Dモデルにアプローチを試行し、Text2Texのような既存のテクスチャよりも優れた品質を示すユーザスタディを行った。
さらに,本手法はDreamFusionの2倍の速度で収束する。
テキストプロンプトにより、多様な芸術スタイルのテクスチャが作成できる。
われわれは、Euclidreamerが3Dコンテンツ作成における労働集約的な段階を自動化するための実行可能なソリューションを提案できることを願っている。
関連論文リスト
- TEXGen: a Generative Diffusion Model for Mesh Textures [63.43159148394021]
我々は、UVテクスチャ空間自体における学習の根本的な問題に焦点を当てる。
本稿では,点クラウド上にアテンション層を持つUVマップ上の畳み込みをインターリーブするスケーラブルなネットワークアーキテクチャを提案する。
テキストプロンプトとシングルビュー画像によって導かれるUVテクスチャマップを生成する7億のパラメータ拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-11-22T05:22:11Z) - DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation [149.77077125310805]
我々はDreamMeshを提案する。DreamMeshは、明確に定義された表面(三角形メッシュ)をピボットして高忠実な3Dモデルを生成する、新しいテキスト・ツー・3Dアーキテクチャである。
粗い段階では、メッシュはまずテキスト誘導ジャコビアンによって変形し、その後DreamMeshは2D拡散モデルを用いてメッシュをテクスチャ化する。
細かい段階では、DreamMeshはメッシュを共同で操作し、テクスチャマップを洗練し、高品質なトライアングルメッシュを高忠実なテクスチャ素材で実現する。
論文 参考訳(メタデータ) (2024-09-11T17:59:02Z) - GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details [31.92583566128599]
伝統的な3D衣服の作成は、スケッチ、モデリング、紫外線マッピング、時間のかかるプロセスを含む労働集約型である。
本稿では,GarmentDreamerを提案する。GarmentDreamerは,テキストプロンプトから3D衣料を生成するためのガイダンスとして,3Dガウススプラッティング(GS)を利用する新しい手法である。
論文 参考訳(メタデータ) (2024-05-20T23:54:28Z) - Infinite Texture: Text-guided High Resolution Diffusion Texture Synthesis [61.189479577198846]
Infinite Textureはテキストプロンプトから任意の大きさのテクスチャ画像を生成する方法である。
本手法は,1つのテクスチャ上に拡散モデルを微調整し,その分布をモデルの出力領域に埋め込むことを学習する。
1つのGPU上で任意の解像度の出力テクスチャ画像を生成するためのスコアアグリゲーションストラテジーによって、我々の微調整拡散モデルが生成される。
論文 参考訳(メタデータ) (2024-05-13T21:53:09Z) - TexRO: Generating Delicate Textures of 3D Models by Recursive Optimization [54.59133974444805]
TexROは、UVテクスチャを最適化することで、既知の3Dメッシュの繊細なテクスチャを生成する新しい方法である。
テクスチャ品質,ディテール保存,視覚的一貫性,特に実行速度の観点から,TexROの優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-22T07:45:51Z) - EucliDreamer: Fast and High-Quality Texturing for 3D Models with Stable Diffusion Depth [5.158983929861116]
テキストプロンプトと3Dメッシュが与えられた3次元モデルのテクスチャを生成する新しい手法を提案する。
追加の深度情報を考慮し、スコア蒸留サンプリング(SDS)プロセスを実行する。
論文 参考訳(メタデータ) (2023-11-27T06:55:53Z) - TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion
Models [77.85129451435704]
大規模誘導画像拡散モデルを用いて3次元テクスチャを合成する手法を提案する。
具体的には、潜時拡散モデルを利用し、セット・デノナイジング・モデルと集合・デノナイジング・テキスト・マップを適用する。
論文 参考訳(メタデータ) (2023-10-20T19:15:29Z) - Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models [21.622420436349245]
入力としてテキストプロンプトからルームスケールのテクスチャ化された3Dメッシュを生成する方法であるText2Roomを提案する。
我々は、事前訓練された2次元テキスト・画像モデルを利用して、異なるポーズから画像列を合成する。
これらの出力を一貫した3次元シーン表現に引き上げるために、単眼深度推定とテキスト条件のインペイントモデルを組み合わせる。
論文 参考訳(メタデータ) (2023-03-21T16:21:02Z) - TEXTure: Text-Guided Texturing of 3D Shapes [71.13116133846084]
TEXTureは,テクスチャのテクスチャのテクスチャの編集,編集,転送を行う新しい方法である。
表面テクスチャを明示することなくシームレスな3次元テクスチャを生成する3次元マップ分割プロセスを定義する。
論文 参考訳(メタデータ) (2023-02-03T13:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。