論文の概要: Fake or JPEG? Revealing Common Biases in Generated Image Detection Datasets
- arxiv url: http://arxiv.org/abs/2403.17608v1
- Date: Tue, 26 Mar 2024 11:39:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 15:47:16.888814
- Title: Fake or JPEG? Revealing Common Biases in Generated Image Detection Datasets
- Title(参考訳): フェイクかJPEGか? 生成した画像検出データセットの共通バイアスを明らかにする
- Authors: Patrick Grommelt, Louis Weiss, Franz-Josef Pfreundt, Janis Keuper,
- Abstract要約: AI生成画像検出のための多くのデータセットには、JPEG圧縮と画像サイズに関するバイアスが含まれている。
我々は、検出器が本当にこれらの望ましくない要因から学習できることを実証した。
これにより、ResNet50とSwin-T検出器のクロスジェネレータ性能が11%以上向上する。
- 参考スコア(独自算出の注目度): 6.554757265434464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of generative image models has highlighted the urgent need to detect artificial content, which is a crucial step in combating widespread manipulation and misinformation. Consequently, numerous detectors and associated datasets have emerged. However, many of these datasets inadvertently introduce undesirable biases, thereby impacting the effectiveness and evaluation of detectors. In this paper, we emphasize that many datasets for AI-generated image detection contain biases related to JPEG compression and image size. Using the GenImage dataset, we demonstrate that detectors indeed learn from these undesired factors. Furthermore, we show that removing the named biases substantially increases robustness to JPEG compression and significantly alters the cross-generator performance of evaluated detectors. Specifically, it leads to more than 11 percentage points increase in cross-generator performance for ResNet50 and Swin-T detectors on the GenImage dataset, achieving state-of-the-art results. We provide the dataset and source codes of this paper on the anonymous website: https://www.unbiased-genimage.org
- Abstract(参考訳): 生成画像モデルの普及により、人工的コンテンツを検出する緊急の必要性が浮き彫りになってきた。
その結果、多数の検出器と関連するデータセットが出現した。
しかし、これらのデータセットの多くは必然的に望ましくないバイアスを導入し、検出器の有効性と評価に影響を与える。
本稿では,AI生成画像検出のための多くのデータセットにはJPEG圧縮と画像サイズに関するバイアスが含まれていることを強調する。
GenImageデータセットを用いて、検出者がこれらの望ましくない要因から実際に学習できることを実証する。
さらに,名前付きバイアスの除去はJPEG圧縮に対するロバスト性を大幅に向上させ,評価検出器のクロスジェネレータ性能を著しく変化させることを示した。
具体的には、GenImageデータセット上のResNet50とSwin-T検出器のクロスジェネレータ性能が11パーセント以上向上し、最先端の結果が得られた。
我々は匿名のウェブサイトで、この論文のデータセットとソースコードを提供しています。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - GenDet: Towards Good Generalizations for AI-Generated Image Detection [27.899521298845357]
既存の方法では、目に見えないジェネレータが生成した画像を効果的に検出できるが、見えないジェネレータが生成した画像を検出することは困難である。
本稿では、異常検出の観点から、この課題を考慮し、未知のジェネレータ検出問題に対処する。
提案手法は,実画像の教師モデルと学生モデルとの出力の差を小さくし,偽画像の差を大きくすることを目的としている。
論文 参考訳(メタデータ) (2023-12-12T11:20:45Z) - Exposing Image Splicing Traces in Scientific Publications via Uncertainty-guided Refinement [30.698359275889363]
画像操作の疑いのある科学出版物の急増は、多くの撤回につながった。
画像スプライシング検出は、参照画像の欠如と典型的には小さな改ざんされた領域のため、より困難である。
本稿では,破壊要因の影響を軽減するために,不確実性誘導型リファインメントネットワーク(URN)を提案する。
論文 参考訳(メタデータ) (2023-09-28T12:36:12Z) - GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image [28.38575401686718]
我々は、100万組のAI生成フェイクイメージと実際の画像の収集を含むGenImageデータセットを紹介した。
この利点は、GenImageで訓練された検出器が徹底的な評価を行い、多様な画像に適用可能であることを示すことである。
本研究では,本データセットの包括的解析を行い,実世界のシナリオに類似した検出手法を評価するための2つの課題を提案する。
論文 参考訳(メタデータ) (2023-06-14T15:21:09Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
教師付きクロスエントロピー(CE)損失に加えて、教師なしCD損失を定式化する半教師付きCDモデルを提案する。
2つの公開CDデータセットを用いて実験を行った結果,提案手法は教師付きCDの性能に近づきやすいことがわかった。
論文 参考訳(メタデータ) (2022-04-18T17:59:01Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。